Γ

 \Box

Cost and Price Impacts of an 80-dBA Truck Noise Regulation

Bolt Beranek and Newman Inc.

n-96-01 II-A-819

E.K. Bender, R.L. Bronsdon, and J.A. Kane

June 1981

Prepared for: U.S. Environmental Protection Agency

COST AND PRICE IMPACTS OF AN 80-dBA TRUCK NOISE REGULATION

E.K. Bender R.L. Bronsdon J.A. Kane

EPA Contract No. 68-01-5014

June 1981

Prepared by:

Bolt Beranek and Newman Inc. 10 Moulton St. Cambridge, MA 02238

Prepared for:

Environmental Protection Agency Office of Noise Abatement and Control Crystal Mall Building, #2 1921 Jefferson Davis Highway Arlington, VA 22202

Bolt Beranek and Newman Inc.

PREFACE

This report deals with the incremental price and cost impacts of implementing an 80-dBA noise regulation for medium and heavy duty trucks. The incremental impacts represent the price and cost differential of moving from the current 83-dBA regulation to an 80-dBA regulation. The results are based on updated estimates from the original Background Document, product verification reports, and estimates developed from the Quiet Truck Demonstration Program.

Report No. 4682 Bolt Beranek and Newman Inc. TABLE OF CONTENTS page PREFACE 111 vii LIST OF FIGURES LIST OF TABLES 1x 1. INTRODUCTION l 5 2. DISTRIBUTION OF ENGINE MODELS 2.1 Diesel Engines 5 2.2 Gasoline Engines 11 ESTIMATION OF REQUIRED NOISE REDUCTION 15 3. 3.1 Diesel Engines 18 3.2 Gasoline Engines 22 ESTIMATED INITIAL PRICE IMPACTS 27 4. 4.1 Diesel Engines - series 1 and 2 27 4.2 Diesel Engines - series 3 43 4.3 Gasoline Engines 49 OPERATING COST IMPACTS 53 5. 5.1 Incremental Fuel Costs 53 Incremental Maintenance Costs 58 5.2 5.3 Operating Cost Summary 60 APPENDIX A A-1

. . 1

i,

F43

Π

v

Bolt Beranek and Newman Inc.

LIST OF FIGURES

FIGU	RE	page
1.	General Relationship between the Total Vehicle Noise Level, Exhaust Noise Level, and the Level of Noise from All Other Sources	16
2.	Noise Reduction Approach for a Cummins 290 Engine	21
3.	Approach to Costs of Noise Reduction for a Cummins 290 Engine	23
4.	Relation of Exhaust Noise Reduction and Price	48
5.	Weight of Noise Reduction Treatments	54
A-1,	Noise Emissions from Trucks Using the Caterpillar 3208 Engine	A-2
A-2.	Noise Emissions from Trucks Using the Caterpillar 3406 Engine	A-2
A-3.	Noise Emissions from Trucks Using the Caterpillar 3408 Engine	A-3
A-4.	Noise Emissions from Trucks Using the Cummins 230 Engine	A-3
A-5.	Noise Emissions from Trucks Using the Cummins 250 Engine	A-4
А-б.	Noise Emissions from Trucks Using the Cummins 290 Engine	A-4
A-7.	Noise Emissions from Trucks Using the Cummins 350 Engine	A-5
A-8.	Noise Emissions from Trucks Using the Cummins 400 Engine	A-5
A-9.	Noise Emissions from Trucks Using the Detroit Diesel 6-71 Engine	А-б

Report No. 4682 Bolt Beranek and Newman Inc. LIST OF FIGURES (cont'd) FIGURE page A-10. Noise Emissions from Trucks Using the Detroit Diesel 6V-92 Engine A-6 A-11. Noise Emissions from Trucks Using the Detroit Diesel 8V-71 Engine A-7 A-12. Noise Emissions' from Trucks Using the Detroit Diesel 8V-92 Engine A-7 A-13. Noise Emissions from Trucks Using the Detroit Diesel A-8 A-14. Noise Emissions from Trucks Using the Detroit Diesel A-8 6V-53 Engine A-15. Noise Emissions from Trucks Using the Detroit Diesel A-9 8.2L Engine A-16. Noise Emissions from Trucks Using the International A-9 Harvester 9.0L Engine A-17. Noise Emissions from Trucks Using the International A-10 Harvester 466 Engine A-18. Noise Emissions from Trucks Using the Mack Engine A-10

 \square

viii

Bolt Beranek and Newman Inc. Report No. 4682 LIST OF TABLES TABLE page 1. Market Distribution and Compliance Price Summary, Medium and Heavy Truck 80-dBA Regulation - 1980 4 Distribution of Truck Sales by Engine Manufacturers 2. and Truck Manufacturers , Class 6, 7, and 8 Diesel 7 Trucks, 1980 Allocation of Engines - GMC Trucks: Standard (Std) 3. and Optional (Opt) Engine Applications 8 Estimated Distribution of Engines - GMC Trucks 1980 ... 4. 10 Distribution of Engines - Diesel-Powered Class 6, 7, 5. 12 and 8 Trucks; 1980 Shipments Distribution of Gasoline Truck Sales by Manufacturer, б. Classes 5, 6, 7, and 8, 1980 13 7. Distribution of Noise Levels of Diesel Engines 19 8. Distribution of Noise Levels of Gasoline Engines 24 Summary of Noise Reduction by Manufacturer - Gasoline-9. 25 Powered Trucks 10. Distribution of Cummins 290 Engine by Truck Noise 29 30 11. Required Source Noise Reduction 12. Summary of Calculations - Exhaust System Price 34 Increases; Cummins 290 Series Engines 13. Summary of Price Increases: Cummins 290 Series · 36 Engines 14. Estimated Compliance Price by Engine Model; Series 1 37 Class 6 Vehicles 15. Estimated Compliance Price by Engine Model; Series 2 38 Class 6 Vehicles 16. Estimated Compliance Price by Engine Model; Series 1 39 Classes 7 and 8 Vehicles 17. Estimated Compliance Price by Engine Model; Series 2 Classes 7 and 8 Vehicles 40

. 1

1.5

1.0

118

1

1.5

1

4

- ----

「教育時代の利用的な」と言語などのなどで

: 1 Report No. 4682 Bolt Beranek and Newman Inc. LIST OF TABLES (cont'd) TABLE page 1 1 18. Estimated Compliance Price by Engine Model; Series 1 Total Market Vehicles 41 19. Estimated Compliance Price by Engine Model; Series 2 Total Market Vehicles 42 20. Estimated Compliance Price by Engine Model; Series 3 45 Class 6 Vehicles 21. Estimated Compliance Price by Engine Model; Series 3 46 Classes 7 and 8 Vehicles 22. Estimated Compliance Price by Engine Model; Series 3 47 Total Market Vehicles 23. Summary Statistics - Muffler Price Equation 50 24. Summary of Noise Reduction and Prices by Manufacturers; 51 Gasoline-Powered Trucks 1 25. Compliance by Price Class - 80 dBA Level; Gasoline-51 Powered Trucks 55 26. Increase in Weight due to 80-dBA Level 56 27. Increase in Backpressure due to 80-dBA Level 28. Changes in Annual Fuel Costs Associated with 80-dBA 57 Regulatory Level 59 29. Annual Muffler Maintenance Costs, 80-dBA Regulation ... F=1 ا ا نصره 30. Summary of Annual Operating Cost Increases, 80-dBA 61 Regulatory Level

F~1

Res.

. . .

• • • • • • • • • • •

ويوافعه فيعاد المتحاد المتعادين

Х

Bolt Beranek and Newman Inc.

1. INTRODUCTION

In 1976, the Environmental Protection Agency (EPA) promulgated noise emission regulations for newly manufactured medium and heavy duty trucks. The regulations instituted an 83-dBA maximum noise level that became effective January 1, 1978 and an 80-dBA noise level that was scheduled to become effective January 1, 1982. An extensive analysis of the technology and costs of the regulations was presented in the Background Document that accompanied the promulgation of the regulations.

Early in 1981, the Agency deferred the effective date of the 80-dBA noise level from 1982 to 1983.* This decision was made partially in response to industry contentions that the economic impacts of an 80-dBA level would be more severe than originally estimated because of changes in circumstances since the publication of the regulations and the Background Document in 1976. The Agency retained Bolt Beranek and Newman Inc. (BBN) to prepare estimates of the incremental costs and price impacts of an 80-dBA regulatory level, given current levels of truck noise. This report presents the findings of BBN's analysis.

This analysis is based in part on two data sources that were not available in 1976:

• Product verification data submitted by truck manufacturers to EPA

1

• Results of the EPA-sponsored Demonstration Truck Program.

*Federal Register, Vol. 46, No. 17, Jan. 27, 1981.

Ľ

Bolt Beranek and Newman Inc.

11

: 1

1.1

BBN integrated these new data sources with information (updated as appropriate) from the original Background Document. The results of this analysis are summarized below and described in the remainder of this report. The BBN cost and price estimates are given in current 1980 dollars and are the *incremental* costs of moving from an 83-dBA to an 80-dBA regulatory level.

The estimates presented in this report were prepared under significant constraints. One must recognize these constraints in evaluating the estimates. The analysis had to be completed within 2 months. This short time frame and budgetary constraints prohibited a detailed engineering analysis of the specific treatments that would be required on a model-by-model basis for compliance with an 80 dBA level. Recognizing these constraints, BBN developed an analytical approach that made maximum use of available data and excluded physical inspection or field testing. The estimates presented here are based on this approach.

In addition to these constraints, it should also be recognized that product verification (PV) data, upon which a major portion of this report is based, represents worst case truck configurations. The PV data set therefore, is biased towards higher emission levels. The estimates of required noise reduction and the price of that reduction would be similarly biased.

Table 1 presents a summary of the medium and heavy duty truck market in calendar year 1980 and BBN's estimates of the incremental price of complying with an 80-dBA regulatory level. The market distribution data show the change that has occurred in recent years. Diesel-powered trucks now account for two thirds of the market, in comparison to one third reported in the 1976 Background Document. Each of the three compliance price series yields increases that are generally less than the \$240 to \$786 price increases (inflated to 1980 dollars) originally estimated by the Agency.

Report No. 4682

Bolt Beranek and Newman Inc.

Section 2 of this report describes BBN's approach to estimating the market share of specific engines. Section 3 reports on the observed noise levels of those engines and BBN's approach to estimating required noise reduction. The estimated initial price impacts are presented in Sec. 4, and operating cost impacts are presented in Sec. 5.

Bolt Beranek and Newman Inc.

5

U.S. Total Factory Sales	Classes 5 & 6	Classes 7 & 8	Total
Estimated Unit Sales			
• Gasoline	56,152	23,551	79,703
• Diesel	15,268	151,404	166,672
• Total	71,420	174,955	246,375
Percent Sales			
• Gasoline	22.8	9.6	32.4
• Diesel	6.2	61.4	67.6
• Total	29.0	71.0	100.0
Estimated Incremental. Compliance Price			Sales-Wgtd Average
GasolineDiesel*	\$ 63.61	\$ 40.25	\$ 52.32
- Series I	183.16	162.37	164.40
- Series 2	203.19	159.50	163.68
- Series 3	449.66	345.37	352.35

TABLE 1MARKET DISTRIBUTION AND COMPLIANCE PRICE SUMMARY,
MEDIUM AND HEAVY TRUCK 80-dBA REGULATION - 1980.

*Series 1 - Estimates based on improved exhaust systems and other source noise reduction at \$80/dBA; Series 2 - Estimates based on improved exhaust systems and other source noise reduction at \$70 to \$140/dBA; Series 3 - Estimates based on Demonstration Truck Program experience of \$129/dBA and a different estimation procedure.

Sources: Motor Vehicle Manufacturers Association Releases FS3 (2/4/81), FS5 (2/3/81), FS3-Supplement (3/4/81); BBN estimates.

Bolt Beranek and Newman Inc.

2. DISTRIBUTION OF ENGINE MODELS

The dominant noise sources for both medium and heavy trucks are related to the engine selected. Engine casing noise, exhaust noise, and intake noise characteristics vary from engine to engine somewhat independently of the truck in which the engine is placed. The final measured truck noise level reflects the manufacturers' attempts to block, absorb, and muffle these engine sources. These efforts are often independent of cab type, vehicle class, or other vehicle characteristics.

and the second second

Recognizing this, BBN chose to undertake an analysis of the market share of each engine and the noise level of trucks powered by each engine. This section describes the procedure by which BBN derived estimates of the 1980 market share of each engine model.

2.1 Diesel Engines

BBN estimated the market share of each engine model on the basis of:

- Sales of diesel-powered trucks by class and by truck manufacturer
- The distribution of engines by engine manufacturer and truck manufacturer
- The distribution of standard and optional engines by truck class, model, and manufacturer.

The Motor Vehicle Manufacturers' Association (MVMA) publishes several truck data series. One series reports sales of each truck manufacturer for 8 weight classes. A second series reports the distribution of diesel engines in trucks by engine manufacturer and truck manufacturer. BBN reviewed these data series and found

Bolt Beranek and Newman Inc.

i-i

<u>ر</u> : ۲

that class 1 and 2 trucks were powered with engines from one group of engine manufacturers, while class 6, 7 and 8 trucks were powered with engines from an entirely different group of engine manufacturers* BBN therefore developed the distribution of diesel engines by engine manufacturer for class 6, 7 and 8 trucks directly from the MVMA data by subtracting the entries for class 1 and 2 trucks from the overall totals. This distribution is shown in Table 2.

Table 2 shows 1,203 Chevrolet trucks powered by Caterpillar engines. However, no published data show the distribution of these engines by specific engine model.** To estimate the distribution of specific models of engines, BBN constructed a matrix listing all the standard and optional engines available for each truck model produced. The 1980 Diesel Truck Index was the primary source used to construct this matrix. Product literature was a secondary source. The matrix lists 122 specific truck models among 7 truck manufacturers and 80 specific engine models among 8 engine manufacturers. There are 668 engine-truck combinations -- 209 standard combinations and 459 optional combinations. Eighty-five percent of all combinations involved turbo-charged engines.

The information from the engine model/truck model matrix was combined with information upon which Table 2 is based to construct an allocation matrix for each manufacturer. Table 3 is an example of an allocation matrix for GMC trucks. There are control totals for each class and each engine manufacturer. The cell entries show the number of times a specific engine is offered as standard or as an option. Using this information and the allocation procedure described below, BBN estimated the number of specific engine

*There were no Class 3,4 or 5 diesel powered trucks reported by C. F. MVMA Series FS-5, February 3, 1981 MVMA.

**Theoretically, one could obtain this information from the Vehicle Identification Number, but it is not available from commercial reporting services.

<u>ار</u> ن Π \int IJ рала 1 1909)=) [___] -"

「たいにはなける」は、「日日日」という」

Report No. 4682

DISTRIBUTION OF TRUCK SALES BY ENGINE MANUFACTURERS AND TRUCK MANUFACTURERS CLASS 6, 7, AND 8 DIESEL TRUCKS, 1980. TABLE 2

				ngine Manufactur	ers			
Truck Manufacturer	Caterpillar	Curmins	Detroit Diesel	International Harvester	Mack	Mercedes	0ther	Total Sales
Chevrolet	1,203	236	3,563					5,002
GM	3,966	6,192	13,738					23,896
Ford	18,126	7,464	10,996					36,586
International								
Harvester	2,402	16,744	4,554	14,535				38,235
Mack	390	1,871	464		21,542		351	24,618
Freightliner	1,379	6,372	2,114					9,865
Kenworth	1,967	6.441	2.261					10 640
Peterbilt	1,441	4,259	1.287		<u> </u>			6 087
White	566	4,669	1,618					6,853
Merredec								
						949		946
Jarst IIIn		201					1,056	1,224
Other	487	748	856	_				2,091
TOTAL SALES	31,927	55,164	41,451	14,535	21,542	646	1,407	166,672
Sources: Motor /	Vehicle Manufac	turers' Ass	ociation;					
ISA NAR	timates							

Bolt Beranek and Newman Inc.

Bolt Beranek and Newman Inc.

TABLE 3 ALLOCATION OF ENGINES - GMC TRUCKS: STANDARD (STD) AND OPTIONAL (OPT) ENGINE APPLICATIONS.

an The second se

Engine	Class 6	Class 7	Class 8	Control
Model	Std Opt	Std Opt	Std Opt	Total
Caterpillar				3,966
3206	2			
3406			2	
Cummins				6,192
230		2	2	
290	ĺ	8	6	
350		7	6	
400			3	
Detroit Diesel				13,738
4-53	2			
6V-53	2			
6-71		4	4	
8V-71		42	42	
6V-92		3	3	
8V-92		1	1	
Control Total	5,545	2,127	16,224	23,896

64 I 1 7 ;] ₽~(}_L \$24 |**' |**i 17 11

Bolt Beranek and Newman Inc.

models that were sold by each truck manufacturer. The results for each manufacturer are aggregated to obtain the overall distribution of 1980 engine model sales.

The BBN procedure allocated control totals among engine models on the basis of the number of times the engine was listed as a standard or optional engine. Standard engines received double weighting in the allocation process. The normal allocation procedure was first to allocate small control totals and then allocate residuals. Table 3 is an example: We first allocated the 3966 Caterpillar engines on GMC vehicles (c.f., Table 2) equally between class 6 and class 8. Then we calculated Class 6 Detroit Diesel applications as a residual of the class 6 control total. We were left with 2 engine makes, Cummins and Detroit Diesel, and 2 classes, 7 and 8. We allocated the 2127 class 7 applications between the 2 engine manufacturers on the basis of the number of times engines were available as standard or optional and then solved for class 8 applications as a residual from the engine control totals.

At this point, there was an allocation to each class/engine manufacturer combination. Each of these totals was allocated to a specific engine model on the basis of the number of times that engine was listed as standard or optional. For example, the 1033 Cummins engines for class 7 GMC trucks were allocated on the basis of 2/17, 8/17, 7/17, given the entries in Table 3. The output of this exercise for GMC trucks is shown in Table 4.

We repeated the allocation procedure for each truck manufacturer. The basic procedure was to construct an allocation matrix with control totals and then allocate to specific models on the basis of the model's availability. Tables comparable to Tables 3 and 4 were constructed for each truck manufacturer. The results for each truck manufacturer were aggregated to estimate the sales of each engine model.

Bolt Beranek and Newman Inc.

	Class			
Engine	6	7	8	Total
Caterpillar	1,983	-	1,983	3,966
3208	1,983	-		1,983
3406	-	-	1,983	1,983
Cummins	-	1,033	5,159	6,192
230	-	122	606	728
290	- 1	486	2,064	2,550
350	-	425	1,943	2,368
400	-	-	-	546
Detroit Diesel	3,562	1,094	9,082	13,738
4-53	1,781	-	-	1,781
6V-53	1,781	-	-	1,781
6-71	-	243	2,018	2,261
8V-71	-	608	5,046	5,654
6V-92	-	182	1,514	1,696
8 v- 92	-	61	504	565
TOTAL	5,545	2,127	16,224	23,896

TABLE 4 ESTIMATED DISTRIBUTION OF ENGINES - GMC TRUCKS 1980.

.

 \Box

Bolt Beranek and Newman Inc.

Table 5 presents the results of this exercise. Of 166,672 diesel-powered trucks reported by MVMA to have been shipped in 1980, BBN was able to allocate specific engine models to 163,357. The 3,315 unallocated engines are accounted for by the 1,224 trucks produced by Chrysler for export and the 2,091 "other" trucks reported by MVMA. Cummins had the largest market share, 33.2 percent, with the Formula and NTC 290 engines having 18.5 percent of the market. Detroit Diesel accounted for one quarter of the market and had 4 engines, each of which had approximately 5 to 6 percent of the market. Caterpillar accounted for 19.3 percent of the market, and the 3406 was clearly the most popular Caterpillar engine. It is noteworthy that 2 engines, the Caterpillar 3406 and the Cummins 290, accounted for approximately one third of the market.

There is undoubtedly some degree of error in the distribution presented in Table 5 because of the working assumptions upon which the allocation process was based. Nevertheless, the estimated distribution is a reasonable basis upon which to proceed. The control totals minimize the potential for large errors and provide a basis for estimating sales of specific engine models.

2.2 Gasoline Engines

The 1980 sales of gasoline-powered medium and heavy duty trucks are summarized in Table 6. General Motors accounted for approximately half of the market, while Ford captured almost 40 percent. Gasoline engines are more prevalent in class 5 and 6 vehicles than in class 7 and 8 vehicles.

Bolt Beranek and Newman Inc.

-

1

· · · · ·

100

L

 \square

: •_-

TABLE 5DISTRIBUTION OF ENGINES - DIESEL-POWERED CLASS 6, 7, AND 8TRUCKS; 1980 SHIPMENTS.

Engine Manufacturer and Model	Total Shipments 1980	Unallocated	Total Allocated	Medium (Class 6)	lieavy (Classes 7 & 8)
Caterpiller	31,927	487	31,440	5,605	25,835
• 3208			7.619	4, 865	2.754
• 3306	1		231		231
• 3406			23, 123	740	22, 383
• 3408			467		467
	55,164	916	54.248	236	54.012
• 230			5,433	33	5,400
+ 250			2,700		2,700
• 290/300	l	1	30, 153	94	30,059
* 350			11,449	85	11, 364
+ 400			3,436	24	3.412
• 450 & others			1,077		1,077
Detroit Diegol	41.451	856	40, 595	7, 125	33,470
+ 6=71			8,670	584	8,086
• 6V-92			9,954	1,402	8,552
• BV71			9,868	467	9,401
• 6V-92	1		7.606	175	7,431
• 4-53	ľ		2.015	2.015	
• 6V-53			2,015	2.015	
• 8.2L			467	467	-
International	14,535	0	14,535	2,422	12,113
• 9.0 Liter			4,360	1,453	2,907
• DT(I) 466			10,175	969	9,206
Mack	21,542	0	21,542	None	21,542
• ETZ 477			1,380		1,380
• ETZ 673			4,971		4,971
• ETAZ 673			3,867		3,867
• ETZ 675			4,695		4,695
• ENDT 676			4,143		4,143
• ETAZ 1000			2,486		2,486
Scania	351	0	351	None	351
Mercedes - OH 325	646	0	646	646	
Other	1,056	1,056	0		
Total	166,672	3,315	163,357	16,034	147,323

Source: BBN estimates.

12

4.5

Bolt Beranek and Newman Inc.

TABLE 6DISTRIBUTION OF GASOLINE TRUCK SALES BY MANUFACTURER
CLASSES 5, 6, 7, AND 8, 1980.

		lot	al
Classes 5 & 6	Classes 7 & 8	Number	Percent
15,566	861	16,427	23.1
10,177	17,457	27,634	38.9
17,776	842	18,618	26.2
4,759	3,640	8,399	11.8
48,278	22,800	71,078	. 100.0
7,874*	751	8,625*	
56,152	23,551	79,703	-
	Classes 5 & 6 15,566 10,177 17,776 4,759 48,278 7,874* 56,152	Classes 5 & 6 Classes 7 & 8 15,566 861 10,177 17,457 17,776 842 4,759 3,640 48,278 22,800 7,874* 751 56,152 23,551	Classes 5 & 6 Classes 7 & 8 Number 15,566 861 16,427 10,177 17,457 27,634 17,776 842 18,618 4,759 3,640 8,399 48,278 22,800 71,078 7,874* 751 8,625* 56,152 23,551 79,703

*Primarily vehicles manufactured by Chrysler for export. All calculations based on 71,078 vehicles.

Sources: Motor Vehicle Manufacturers' Association Releases FS3 (2/4/81), FS5 (2/5/81), FS3-Supplement (3/4/81); BBN estimates.

Bolt Beranek and Newman Inc.

_

 \sim

...

11

1

It was not necessary to estimate the market share of each gasoline engine model because of the relatively low noise levels of gasoline-powered trucks. A preliminary review of product verification report noise levels, discussed in Sec. 3, showed that Ford and GMC vehicles were already below 80 dBA, while International Harvester gasoline-powered vehicles were just slightly above. The cost to quiet these vehicles could be estimated for each manufacturer without disaggregating the analysis to individual engines. Hence, BBN did not estimate the market share of gasoline engine models.

Bolt Beranek and Newman Inc.

3. ESTIMATION OF REQUIRED NOISE REDUCTION

This section presents the procedure BBN used to estimate the required noise reduction for each of the engines identified in Sec. 2 to comply with the 80-dBA regulation. Truck noise sources are grouped as either 1) exhaust noise or 2) noise from all other sources. The latter category encompasses primarily engine, fan, and transmission noise. Since the overall truck noise level is the sum of the two constituent levels, we are able to generate a family of curves that show the relationship between exhaust noise and all other noise, and overall truck noise. This information is then used to determine the reduction of the constituent noise sources required to reduce overall truck noise to a 77.5-dBA design level for the 80-dBA regulatory level.

Figure 1 presents the general relationship between exhaust noise and other noise sources, and overall truck noise. The level of exhaust noise is shown along the horizontal axis. The overall noise level of the truck is shown on the vertical axis. The family of curves in Fig. 1 shows the level of all other sources. Referring to Fig. 1, we see exhaust noise of 80 dBA and other noise of 80 dBA (i.e., the curve labeled 80) which correspond to an overall truck noise level of 83 dBA. Likewise, exhaust noise of 75 dBA and other noise of 75 dBA yield an overall level of 78 dBA. Other combinations of exhaust and other source noise correspond to different levels of overall truck noise.

The relationships shown in Fig. 1 provide a framework to determine the amount and type of noise reduction required. We define a design goal of 77.5 dBA to ensure compliance with the proposed 80-dBA regulation. Given this design goal and the relationships in Fig. 1, we can define three distinct types of noise reduction strategies:

いたのであると思いたがないないのと言葉のならな

Bolt Beranek and Newman Inc.

يە:ئە ا

€-4 - |

84 : 1

Ъч

٢.

#i.e

٦İ

1-1

11

#4 11

41

11

44

71

61

ia) Jaco

<u>،</u>،،،

.

....

.

· ----

語は対にもの目的にななるというない。

Report No. 4682

Bolt Beranek and Newman Inc.

- Trucks already in compliance with an 80-dBA regulation and requiring *no* treatments
- Trucks requiring *only* exhaust system modification to comply with an 80-dBA regulation
- Trucks requiring both exhaust system modification and shielding treatments to comply with an 80-dBA regulation.

These three strategies are shown in the three different shaded areas in Fig. 1.

Trucks already in compliance are shown in the lower left corner of Fig. 1. Trucks that currently have other source noise at or below 77 dBA can meet the 77.5-dBA design goal by installing better exhaust systems. The effect is to move downward and to the left along the other source noise curves until an overall level of 77.5 dBA is achieved. Trucks that have other source noise in excess of 77 dBA require a two-step process to achieve compliance. First, other source noise must be reduced to 77 dBA (or lower). Once that level of other source noise is achieved, then exhaust system improvements can be used to achieve compliance.

We note that while 77.5 dBA may prove to be the design goal for a truck regulated to 80 dBA, there is no guarantee that all manufacturers will wish to achieve this level, since even a 79dBA truck is in compliance. This trend can be seen in the product verification data for the 83-dBA regulation. While the noise level of the average truck is currently 80 dBA, there are as many whose noise level is above 80 dBA as below. Our estimates of required noise reduction are based on a design goal of 77.5 dBA. Any variation from that goal will affect the estimates of cost.

Bolt Beranek and Newman Inc.

. 1

r 1

i é

ь т

2-1

62)

41.4

۰...

 \mathbf{P}

Lpc1

3.5

البيدة

11

!!

3.1 Diesel Engines

The major determining factor in the generation of truck noise is the engine. An analysis of the diesel truck market has shown that 15 engine models from 3 main manufacturers are used in more than 75% of trucks sold. As a result, our analysis of required noise reduction has been carried out for each of these engines.

The analytical framework represented in Fig. 1 provided a method to identify specific reduction goals. Product verification (PV) data provided information on current noise levels. We applied the PV data to our analytical framework to identify specific treatments for each engine to meet a 77.5-dBA design level.

We reviewed and processed the PV data to calculate the mean, standard deviation, minimum and maximum noise levels for all trucks in the PV data containing a particular engine. We processed 4,223 records from the PV data. The results of that exercise are shown in Table 7. We see, for example, that trucks with a Cummins 290 engine have an average noise level of 79.9 dBA and a standard deviation of 1.5 dBA. Given these observed values and a normal distribution, we can infer that 68 percent of Cummins 290-powered vehicles have noise levels of 78.4 to 81.4 dBA.

To determine how the distribution of truck noise levels, summarized in Table 7, mapped into the family of curves relating exhaust noise to all other sources, shown in Fig. 1, we made certain assumptions about the nature of the trucks' exhaust systems. While specific exhaust models were reported in some PV submissions, the data supplied to BBN described only the exhaust system configuration (Single Vertical Muffler, Vertical Stack or SVV, etc.). From this information, it was possible to identify several alternative types of mufflers, which could be expected to be found on the quietest and on the noisiest trucks. The quietest muffler

. 4

Ĵ

 \square

 $\left[\right]$

152)

Ţ

J

 $\left(\right)$

14

Bolt Beranek and Newman Inc.

TABLE 7. DISTRIBUTION OF NOISE LEVELS OF TRUCKS WITH DIESEL ENGINES.

......

Engine Manufacturer and Model	Average SPL	Standard Deviation	No. of Observations
Caterpillar	·		
• 3208	80.9	1.2	139
• 3306	-	-	- 1
• 3406	80.1	1.45	893
• 3408	80.8	1.09	1099
Cummins	1	i	
• 230	79.4	1.7	93
• 250	79.8	1.3	39
• 290/300	79.9	1.5	233
• 350	79.8	1.4	168
+ 400	80.6	1.1	203
• 450 & others	-	-	-
Detroit Diesel			
• 6-71	\$0.8	1.6	267
• 6V-92	79.9	1.4	318
• 8V-71	60.2	1.6	144
• 8V-92	80.7	1.3	391
• 4-53	81.8	1.0	9
• 6V-53	82.2	1.8	42
• 8.2L	79.8	0.5	6
International			
• 9.0 Liter	81,4	1.3	10
• DT(I) 466	80.8	1.3	16
Mack			
• ETZ 477	.81.3	0.8	9
• ETZ 673	h l	ĺ	
• ETAZ 673		1	
• ETZ 675	80.1	1.1	113
• ENDT 676)	ł	
• ETAZ 1000	80.0	1.2	14
Scanta	-	-	-
Marcades - OM 325	80.Q	1.40	17
Other	-	-	-
Total			4223

X.

Source: EPA Product Verification Reports - Summary Tabulations.

Bolt Beranek and Newman Inc.

ιl

i İ

ŧ i

16

e a

Ξ.

15094 - - - 1 1--- 1

P-----

.....

-

~___

of the correct configuration was then assumed to be on the truck with the lowest reported noise level, and the noisiest muffler was assumed to be on the truck with the highest reported noise level. Between these two end points was drawn a straight line that defines the relationship between exhaust noise, noise from all other sources, and the overall reported truck noise level for a given type of engine. This is shown as line MN on Fig. 2.

Given the standard deviations presented in Table 7, error could be introduced into the analysis by considering only the mean noise level of an engine. It would be proportionately more expensive to quiet an 82-dBA truck to 77.5 dBA than to treat a 78dBA truck, irrespective of the average value. We therefore considered the treatments (and subsequently costs) of quieting the average, noisier-than-average, and quieter-than-average engine for each engine model. We define these categories as:

- average ± one standard deviation around the mean value (e.g., 78.4 to 81.4 dBA for Cummins 290 engine)
- noisier-than-average greater than one standard deviation above the mean but less than 83 dBA (e.g., 81.4 to 83 dBA for Cummins 290 engines)
- quieter-than-average less than one standard deviation below the mean but greater than the 77.5-dBA design level (e.g., 77.5 to 78.4 dBA for Cummins 290 engines).

The midpoints of these 3 ranges were then plotted on the defined relationship of exhaust noise, other source noise, and overall truck noise for each engine type. These are shown as points \overline{X} , A, and B on line MN in Fig. 2. The same exercise was replicated for each of the engine models identified in the PV data. The results of that exercise are presented in Appendix A.

.

...

1

23 J. ۰. ا

•

Bolt Beranek and Newman Inc.

327

1.4

μ.

ъś

yaha

 \square

. سبع

 $\vec{t} \sim \vec{t}$

1+1

~~,'

The final step in estimating the required noise treatments was to identify how treatments would be applied. For example, one could dramatically reduce other source noise through shielding, but leave the exhaust system untouched. On the other hand, even the quietest exhaust system might not bring overall truck noise to the 77.5-dBA design level. We determined the most cost-effective method of applying noise control treatments by reviewing available information. We specifically reviewed the noise reduction attributable to enclosures and exhaust systems reported in the Background Document and from the Demonstration Truck Program. We also examined the 1980 costs of these treatments. The available data show that exhaust system modifications are more cost-effective than enclosures and shielding to achieve a given level of noise reduction. Therefore, our procedure for applying treatments was to maximize the use of exhaust system modifications and to reduce other source noise only as much as necessary. The effect of this was to employ only as much shielding as necessary to reduce other source noise to 77 dBA and then reduce exhaust noise to 68 dBA, thereby reaching the design goal of 77.5 dBA.

These analyses are shown for the Cummins 290 engine in Fig. 3. The average truck with a noise level of 79.9 dBA will require a 1.5-dB reduction in the level of all sources other than exhaust and a 6-dB reduction in existing exhaust noise, which can be achieved with a better muffler. The higher level truck will require 3.6 dB of shielding as well as 9 dB of extra exhaust noise reduction. The quieter trucks will require only a 6-dB reduction in exhaust level.

3.2 Gasoline Engines

Product verification data for the major gasoline engines used in medium and heavy trucks are shown in Table 8. It is clear that in most cases little or no treatment would be required to

Bolt Beranek and Newman Inc.

FIG. 3. APPROACH TO COSTS OF NOISE REDUCTION FOR A CUMMINS 290 ENGINE.

Bolt Beranek and Newman Inc.

ŧΪ

P) L

4-1

рм) 7

124 (-) 124

Fail Contraction References

TABLE 8.	DISTRIBUTION	OF NOISE	LEVELS BY	GASOLINE	ENGINES.
----------	--------------	----------	-----------	----------	----------

Average SPL	Standard Deviation	No. of Observations
76.8	-	72
78.4	0.77	5
77.6	2,50	10
76.7	1.59	8
76.1	1.72	13
76.4	3.23	22
77.2	1.81	14
79.4	-	30
80.4	3.21	3
78.8	2.52	18
80,1	1.47	9
80.6	-	32
80.2	3.61	19
81.2	1.81	3
81.4	2.64	4
81.2	1.22	6
	Average SPL 76.8 78.4 77.6 76.7 76.1 76.4 77.2 79.4 80.4 78.8 80.1 80.6 80.2 81.2 81.4 81.2	Average SPL Standard Deviation 76.8 - 78.4 0.77 77.6 2.50 76.7 1.59 76.1 1.72 76.4 3.23 77.2 1.81 79.4 - 80.4 3.21 78.8 2.52 80.1 1.47 80.6 - 80.2 3.61 81.2 1.81 81.4 2.64 81.2 1.22

*Includes both Chevrolet and GMC trucks.

Sources: EPA product verification reports - summary tabulations.

というというなどのなどのというの

Report No. 4682

Bolt Beranek and Newman Inc.

reach the target level of 77.5 dBA. Table 9 shows estimates of treatments. Although far less data are available to pinpoint existing exhaust noise levels for gasoline engines, BBN's analysis of the available data indicated that a 6-dB reduction in exhaust noise would be sufficient to bring all Ford and General Motors engines into compliance. International Harvester engines are used only in International Harvester trucks. Given their noise levels in Table 8, BBN concluded that they will require an additional 1.4-dB reduction in engine noise levels through better shielding and underhood absorption in addition to 6 dBA of exhaust noise reduction.

These estimates for gasoline-engine-powered trucks are not based on data comparable to that available for muffler noise levels of diesel-engine-powered trucks. Discussions with muffler manufacturers indicated that present exhaust noise levels of about 79 dBA could be reduced to 73 dBA with better mufflers. This finding indicates that all other noise sources for an 81-dBA truck would total about 76 dBA and would have to be reduced by approximately 1.4 dBA to reach the 77.5-dBA goal.

TABLE 9 SUMMARY OF NOISE REDUCTION BY MANUFACTURER - GASOLINE-POWERED TRUCKS.

	Requir Reduc	ed dBA tion	Boncont
	Exhaust	Other Sources	With Treatment
Ford	6	0	15
General Motors	6	0	100
International Harvester	6	1.4	100

Source: BBN estimates.

Report No. 4682

Bolt Beranek and Newman Inc.

4. ESTIMATED INITIAL PRICE IMPACTS

The estimates of required noise reduction discussed in Sec.3 are the bases of estimated price increases presented in this section. Three price series are presented for diesel engines, and one price series for gasoline engines.*

4.1 Diesel Engines - Series 1 and 2

The first two series of estimated price increases are based on estimates of the required noise reduction from exhaust noise and all other sources. The essential steps in estimating the price of these reductions for each diesel engine model are:

- Develop a family of curves depicting the relationships among overall truck noise, exhaust noise, and noise from all other sources. (These are shown in Sec. 3 and Appendix A.)
- Estimate for each engine the percent of trucks at different overall noise levels on the basis of product verification noise levels and an assumed normal distribution.
- 3) Estimate for an average, noisier-than, and a quieterthan-average truck the amount of noise reduction that would be required for the exhaust system and "all other" sources.
- 4) Estimate the price of "all other" noise sources reduction on the basis of BBN estimates. (The estimated price per dBA for side shields, enclosures, etc. varies between series 1 and 2.)

*In this section, we refer to the *price* of noise reduction. This is the incremental price increase a purchaser would pay when buying a truck meeting an 80 dBA regulated level, as compared with a truck meeting the present 83 dBA level.

Bolt Beranek and Newman Inc.

- 5) Estimate the price of exhaust system noise reduction based on noise levels and prices of alternative mufflers.
- 6) Estimate the overall price impact for each of the three trucks (average, noisier-than-average, quieterthan-average), and then estimate the weighted price on the basis of a normal distribution.

The easiest way to understand this procedure is to work through a specific example. We therefore present the pricing analysis for the Cummins 290 engine for which the estimated noise reduction was described in Sec. 3.1. Since we have already described how we developed the family of curves for exhaust, "all other," and overall noise, we begin this example at the second step in the procedure.

Estimate the Percent of Trucks at Different Noise Levels

The product verification data show that trucks powered by Cummins 290 series engines have a mean noise level of 79.9 dBA and a standard deviation of 1.5 dBA. We assume this distribution is normally distributed around the mean. We observe that the upper end of the distribution is effectively truncated at 83 dBA because of the current regulatory level. Given the normal distribution of these observations, the percent of the observations at various noise levels can be calculated from the area under the normal curve.

We estimated prices for an average, quieter-than-average, and a noisier-than-average engine, rather than estimate the price for the average Cummins 290 engine alone. If one dealt only with the average engine, one would fail to account for the relatively greater expense of quieting engines in the upper end of the distribution. This cost would not be exactly offset by the cost of

[]

1.1

14

 \Box

間

(**) 241

IJ

11

Bolt Beranek and Newman Inc.

quieting the below-average engines. We treated engines within one standard deviation of the mean as an average engine. Quieterthan-average engines ranged from 77.5 dBA to one standard deviation below the mean; noisier-than-average engines ranged from one standard deviation above the mean to 83.0 dBA. We used the midpoint of each of these ranges to estimate required noise reduction and the price of the reduction. Table 10 summarizes this exercise for Cummins 290 series engines.

TABLE	10.	DISTRIBUTI	ON OF	CUMMINS	290	ENGINE	ΒY
		TRUCK NOIS	E LEVE	E.			

Range (dBA)	Range Midpoint	Percent in Range
less than 77.5	-	5.5
77.5 to 78.4	77.9	10.4
78.4 to 81.4 (±10)	79.9 (X)	68.3
81.4 to 83.0	82.2	15.8

Estimate Noise Reduction for Exhaust and "All Other" Sources

Figure 3 in Sec. 3 shows the family of curves for the Cummins 290 engine. The average observation, shown as \overline{X} on line MN, corresponds to exhaust (E) noise of 74 and all other (A) noise of 78.5, i.e., midway between the 78 and 79 curves. The above-average observation, A, has exhaust noise of 77 dBA and (A) noise of approximately 80.6. The below-average point, B, corresponds to exhaust of approximately 71.5 and (A) noise of 76.7. In this step, we determine how to move from B, \overline{X} , and A to 77.5 dBA.
Bolt Beranek and Newman Inc.

We assume that the manufacturer will use as much exhaust noise reduction as possible since this type of reduction is relatively less expensive than other forms of noise reduction. Hence, at \overline{X} , one would move down to the 77 "all other" curve with 1.5 dBA of (A) noise reduction and then move along that curve by reducing exhaust noise to 68 dBA. The combination of 77 (A) noise and 68 (E) noise results in a 77.5-dBA overall noise level.

This procedure is followed for the above-average and belowaverage observations. The results are summarized in Table 11. Note that no (A) noise reduction is required for the below-average observation.

	Below-Average	Average	Above-Average
Observed Overall Level	77.9	79.9	82.2
Other Source Level • Observed • Target	76.7 76.7	78.5 77.	80.6 77.
Exhaust Source Level • Observed • Target	71.5 68.	74.8 68.	77. 68.

TABLE 11. REQUIRED SOURCE NOISE REDUCTION - CUMMINS 290 ENGINE

Estimate the Price of "All Other" Noise Source Reduction

The required (A) noise reduction generally ranged from 2 to 4 dBA. BBN analyzed data from the Background Document and the Demonstration Truck Program to estimate the price of treatments to reduce "all other" (A) noise. Information presented in the Background Document, updated to 1980 prices, is summarized below:

ang ang tang tang tang tang tang tang ta	··· ··· ··· ··· ···	•• . ••	1. N					
Report N	o. 4682		E	lolt Be	ranek	and	Newman	Inc.
• S	ide Shields							
	2 to 3-dBA \$180 price \$60-90/dBA	reduction in 1980*						
• S:	ide Shields							
	4-dBA reduc \$360 price \$90/dBA	tion in 1980						
The follow Truck Prog	wing informat gram:	ion was av	ailable	from	the De	mons	tration	l
• GI	MC Brigadier							
	6 dBA of en \$715 price : \$119/dBA	gine/trans in 1980**	mission	noise	reduc	tion		
• Ir	nternational	Harvester	F-4370					
	8.9 dBA of 6 \$795 price : \$89/dBA	engine/tra: in 1980**	nsmissi	on nois	se red	uctio	on	
BBN u reduction. series wer	used this info Given the o re developed:	ormation to observed va	o estima ariation	ate the n in pr	e price Pice po	e of er di	(A) no BA, two	ise
• Se • Se	eries 1 - a ur eries 2 - a ve required red	ariable pri- luction:	ce of \$8 ice per	30/dBA dBA de	pendiı	ng or	n the	
*Inflated b 1973 = 115 **These are Program in	y Producer Pr .1; 1980 = 2 1979 dollar flated to 198	206.8. estimates 30 dollars	for Tra from th @ 9.5 p	insport ne Demo percent	ation nstrat	Equi	.pment: Truck	

-

 $\left[\right]$

 \Box

[]

Ĵ

19**8** | | | | | | | | |

17

3

「「おおななたないないない」」というないないのです。

Bolt Beranek and Newman Inc.

i d

Ťι

<u>''</u>

1

- O to <2.5 dBA	\$71/dBA
- 2.5 to <4.5 dBA	\$90/dBA
- 4.5 to 6.0 dBA	\$110/dBA
- >6 dBA	\$140/dBA

Report No. 4682

The rationale for Series 1 was that trucks seldom required more than 4 dBA of (A) noise reduction, and \$80 was roughly the average of the updated price of 2 to 4 dBA of reduction from the Background Document.* The rationale for Series 2 was to make maximum use of the data available and to reflect the general increase in costs that are incurred with each incremental dB of noise reduction.

In the example of the Cummins 290 series engine, the required (A) noise reduction was 1.5 dBA, i.e., 78.5 dBA to 77 dBA. The price was \$120 for Series 1 and \$106.50 for Series 2. The price for the above-average engine was \$288 for Series 1 (3.6 dBA @ \$80) and \$324 for Series 2 (3.6 dBA @ \$90). There was no reduction in (A) noise required for below-average engines.

Estimate the Price of Exhaust Noise Reduction

BBN estimated the price of improved exhaust systems on the basis of information supplied by a major muffler manufacturer and pricing procedures used by BBN in the Demonstration Truck Program. The manufacturer's catalogue for diesel engine exhaust systems shows the mufflers available for *each engine model* and the noiselevel of the muffler in that application. That information is publicly available. BBN also obtained a price list which was used to estimate OEM prices, and an overview of the performance objectives and price impacts of mufflers designed to meet an 80-dBA regulatory level. That information is not publicly available and was released to BBN for "computational purposes."

* \$180/2.5 dBA = \$72; \$360/4 dB = \$90.

 \square

1

 \Box

3

1

1

f**

Ĵ

11

1

3

 $\left[\right]$

الداوم فالالدواج فالاصومسم حجا بالودوا الراري

Bolt Beranek and Newman Inc.

BBN worked with this information to estimate the incremental price of reducing exhaust system noise from current levels. The muffler that corresponded to the exhaust noise level for the average, above-average, and below-average observations for each engine was identified in the manufacturer's catalogue. The price of each "baseline" muffler was recorded. In those instances where there was not a perfect match, BBN assumed the baseline was the next noisier muffler. We then identified the muffler that would yield the target exhaust noise level. All exhaust systems were assumed to be single-muffler systems since the available information indicated that exhaust noise levels could be reduced to the required levels by using single "new technology" mufflers - i.e., new mufflers the manufacturer would supply to meet an 80-dBA regulatory level. The significance of this assumption is that it eliminated the need to estimate incremental costs (exclusive of mufflers) of converting single-exhaust systems to dual-exhaust systems.

Again in the case of the Cummins 290 series example, the exhaust noise of the average 290 series of approximately 74 dBA corresponds to a currently available muffler. The required noise reduction of 6 dBA to 68 dBA could be achieved by a "new technology" muffler designed for an 80-dBA regulation. This new model would be in effect a derivative of a currently available muffler that has an exhaust noise level of 70 dBA. The price of the 74-dBA muffler was estimated from published fleet price lists. The price of the 68-dBA muffler was estimated from the price of the currently available 70-dBA muffler plus an escalation factor derived from discussions with industry sources. The incremental price of the target 68-dBA exhaust system is estimated to be \$19.90. That estimate is the difference at the OEM level of the two mufflers times a 1.4 markup at the truck manufacturer level times a 1.35 markup at the truck dealer level. The results of this exercise for the 290 series are

Bolt Beranek and Newman Inc.

summarized in Table 12. Note that in estimating the price of the below-average engine, we made a worst-case assumption that the baseline was a 74-dBA muffler rather than the available 70-dBA muffler, since no muffler exactly matches the estimated 71-dBA exhaust noise for the below-average engine.

TABLE 12. SUMMARY OF CALCULATIONS - EXHAUST SYSTEM PRICE INCREASES; CUMMINS 290 SERIES ENGINES

		Distribut	tion of Truck No	ise	1
Range	<77.5	77.5 - 78.4	78.4 - 81.4	81.4 - 83.0	Total
Midpoint		77.9	79.9	82.2	
Percent of total	5.5	10.5	68.3	15.8	100.0
Exhaust System Noise • Initial		****			ή Ν
- level (dBA)		71	≃74	77	1
- OEM \$		42.83	42.83	21.43	ł
Target			ļ	ļ	1
- level		≃68	≃68	≃68	×
- OEM \$		53.36	53.36	53.36	ſ
Price Increase					4
- OEM \$		10.53	10.53	32.13	1
- Consumer \$	[19.90	19.90	60.35	٦

11

i i

 $\left(\begin{array}{c} \\ \end{array} \right)$

ļ

 \Box

]

 \Box

[]

0

1

Bolt Beranek and Newman Inc.

Estimate the Overall Price Increase

The final step is to combine the price of (A) noise reduction with the price of exhaust noise reduction and estimate the weighted price. Table 13 summarizes the process. The estimated price increases range from \$19.90 for quieter-than-average vehicles to \$384.34 for noisier than-average vehicles. The total price increases are then weighted by the "percent of total" to obtain the distribution weighted price increase. The representative calculation for Series 1 is:

Quieter-than-Average:	0.105	x	\$ 19.90	3	\$ 2.11
Average:	0.683	х	139.90	3	95.57
Noisier-than-Average:	0.158	x	348.35	*	55.06
Distribution Weight	ed Pric	e		×	\$152.74

The distribution weighted price is the average price increase for vehicles powered by Cummins 290 series engines under Series 1 assumptions.

Bolt Beranek and Newman Inc.

1

السة

51 e

٠.,

TABLE 13 SUMMARY OF PRICE INCREASES: CUMMINS 290 SERIES ENGINES.

		Distribut	ion of Truck No	ise	· · ·
Range	<77.5	77.5 - 78.4	78.4 - 81.4	81.4 - 83.0	Total
Midpoint		77.9	79.9	82.2	putr.
Percent of total	5.5	10.5	68.3	15.8	100.0
"All Other" Noise Price Increases					1 1 1 1 1 1
• Series 1			\$120.00	\$288.00	-
• Series 2			106.50	324.00	ľa
Exhaust System Price Increases		\$19,90	\$ 19.90	\$ 60.35	
Total Price Increases					
• Series 1		\$19.90	\$139.90	\$348.35	and a
• Series 2		19.90	126.40	384.35	F
Weighted Price Increases					
• Series 1		\$ 2,11	\$ 95.57	\$ 55.06	\$152.7
• Series 2		2.11	86.35	60.75	149.21

Tables 14 to 19 present the results of this analysis for each engine model in each vehicle class. A market weighted price is presented in each table. It is based on the distribution weighted price for each engine and is the market share of the class. Refer, for example, to the Cummins 290 entry in Table 18. We see the \$152.74 distribution weighted price is weighted by its estimated 18.5-percent market share to yield a market weighted price of \$28.26. The market share price for each engine is summed to obtain a total price for the percent of the market for which entries are

] \Box $\mathbf{\hat{}}$ 1

And Martenanda

Ъ.,

 \Box

ESTIMATED COMPLIANCE PRICE BY ENGINE MODEL; Series 1 - Class 6 Vehicles. TABLE 14

ENGINE MANIPACTURES	PERCENT	ESTIMATED CO	DHPLIANCE PAI	8	DISTRIBUTION	HARKET	epor
AND MODEL	MARKET	1.0W	AVERAGE	HIGH	WEIGHTED PRICE	WEIGHTED PRICE	t N
CATERPILLAR	34.96						lo.
3208 3206	7E-0E	23.53	135,53	177.61	124.30	17.76	468
3406 3408	4.62	12.87 59.90	107.90 180.35	316.35 228.70	125.25 168.78	5.79 0.0	32
CUMMINS	1.48						
230	0.21	B.00	147.87	372.49	160.06	9E U	
290	93.0	40°00	187.87	352.49	188.17	0.00	
350.	0.51	81.63	151.63	392.08	175.63	00.0	
450 AND OTHERS	ci.U	41.27	230.32	17.005	227.03	¥E.0	
DETROIT DIESEL	44.43						
12-3	3.64	19,90	60.35	20° - 108	67 75		
6V-92 811-71	8.74	40.22	80.22	295.28	106.07	9-27	
26-78	1.09	24.23 44.32	103.28	200.66 359 30	104.98	50°. 50'	
4-53 6V-53	12.57	160.00	349.63	417.63	330.22	41.51	
B.2 LITER	2.91	96.10	181.61	200.96	165.81 81.61	20.84 2.37	Bo
INTERNATIONAL	15.10						lt
9-0 LITER DT(1) 466	90-06		354.41		354.41	32.11	Be
	5°04		268.25		268.25	16.20	ra
MACK	0.00						ne
ET2 477 ET2 673			203,96		30 EUC	00	∍k a
ETAZ 673 ETZ 675 ERDT 676			203.96		203.96	0.00	and
ETA2 1000			06°07		203.96	0.00	Ne
SCANIA	0.00						ewma
HERCEDES DM325	E0.\$						n
							Inc.
TOTAL - SUM TOTAL - PRORATED	100.00					175.78	,
						163.16	

R

.

ESTIMATED COMPLIANCE PRICE BY ENGINE MODEL; SERIES 2 ~ CLASS 6 VEHICLES. TABLE 15

D MODEL	HARET	TLOW	AVERAGE	BIGB	HEIGHTED Price	WEIGHTED PRICE
VTERPILLAR	34.96			+ 		
3208 3206	¥E-0E	23.53	125.13	163.21	114.92	34.67
3405	4.62	12.87	98.00 166.85	348.35 212.95	123.54	5.71
SNIMH	1.48					
230	0.21	00 2	92 YEL			
. 250		35.50	169.88	389.99	157.14	0.33
350 350	0.59	19.90 31.63	126.40 138.13	384.35 432.08	149.21	88.0
400 450'AND OTHERS	0.15	44.57	208.72	441.71	218.54	0.33
TROIT DIESEL	64.43					
6-71 67-43	19°	06*6I	60.35	80,35	56.68	2.06
8V-71	2.91	52°04	75.72 07 00	325.28	107.74	9.42
BV-92	1.09	42.07	203.54	397.30 397.30	99.16 208 10	2.89
4-53 6V-53	12.57	142.0D 60 06	535.38 167 AC	560.13	476.74	59.93
8.2 LITER	2.91		14.41	12.681	154.41 74.41	19.41
ITERNATIONAL	15.10					
9.0 LITER Dati) Acc	9.06		12.695		393 . 51	35.65
004 11110	0 ° 04		301.25		301.25	18.20
VCK	0.00					
ETZ 477 ETZ 673 ETAZ 673			182.36 182.36		182.36	00-0
ETZ 675 ENDT 676 ETAZ 1000			182.36		182.36	0.00
ZANIA	0.00					
ERCEDES OM325	4.03					
JTAL – SUM JTAL – PRORATED	00°00E					195.00 203.19

2424 : | : |

_____ اروبا G [] Ĵ

.

]

TABLE 16 ESTIMATED COMPLIANCE PRICE BY ENGINE MODEL; SERIES 1 - CLASSES 7 AND 8 VEHICLES.

I	PERCENT	ESTIMATED CO	TRA ANKE PRI	•	11 CT0 T010 T01		Re
ENGINE PANUPACTURER AND PODEL	OP CLASS 748 MARKET	FLON	AVERAGE	BJGB	WEIGBTED PRICE	NEIGHTED PRICE	ort
CATERPILLAR	17.54				* * * * * * * * * * * *		: No
3208 3206	1.87 1.87 1.87	23.53	135.53	177.61	124.30	2.32	• 4
3406	15.19	12.87 59.90	107.90 180.35	316.35 228.70	125.25 168 78	19.03 0.51	168;
CUMMINS	36.66						2
230	3.67	8.00	147_87	97 CLE	30 031	1	
25D 29D	1.83	00-07	187.87	352.49	188.17	9-91 94-6	
350	17.7	B1.63	151,63	348.35 392.08	152.74	31.16	
450 AND OTHERS	2.32	12.13	230.32	IT-99E	227.03	5.27	
DETROIT DIESEL	17.22						
6-71			:				
6V-92	5-80	19.20 20.22	60.35 80 77	80.35	56.68	11.5	
BV-71	. 6.38	24.23	103.28	200-66	10. du 1 10. 4 ge	6.15	
8V-92 4-53	5.04	44.32	224.24	359.30	216.66	10.92	
6V-53	0.00	67.96	180.96	417.63 200.96	330.22	00"0	
8.2 LITER	00-0	1	81.61		19.COL	0.00	
INTERNATIONAL	8.22]c]
9+0 LITER	79 L		LT 436				5
DT(1) 466	6.25		268.25		354.41	6.98 16.77	?
MACK	14.62						sr.
ET2 477							an
ET2 673	3.37		203.96		30 EUC	F0 3	
ETA2 673 ET7 676	2.62		203.96		203,96	10°0	ς
ENDT 676	2.81		203.96		203.96	6.51	an
ETA2 1000	1.69				06*****	51.0	d
SCANIA	0.24						Ne
							WS
HERCEDES OH325	00.0						ı'a n
							Ind
TOTAL - SUM TOTAL - PRORATED	66°65					156.25	:.
						16.21	

TABLE 17 ESTIMATED COMPLIANCE PRICE BY ENGINE MODEL;
 SERIES 2 - CLASSES 7 AND 8 VEHICLES.

- シントに、私が、 のたいする いん

Mile Motion Matrix Lot MeDicity Hold is Medicity	ENGINE RANDFACTURER	PERCENT OP CLASE 748	ESTIMATED CO	WPLIANCE PRI	2	DISTRIBUTION	MARKET	
CUENTIAN 17.4 3200 1.17 21.53 125.13 155.13 154.21 114.22 2.15 3200 0.216 0.216 0.216 0.216 0.216 0.216 0.216 3400 0.216 0.216 1.27.13 125.13	AND MDDEL	PARET	10%	AVERAGE	HIGH	PRICE	WEIGHTED PRICE	
3200 0.107 21.5.1 15.1.1 14.12 2.1.5 3406 0.107 0.107 12.1.0 15.4.0 14.1.0 2.1.5 3406 0.107 0.125 55.4.0 16.0.5 15.4.0 15.4.1 14.1.2 2.1.5 200 0.107 15.4.0 15.4.0 16.0.5 15.4.0 15.4.1 15.1.1	CRTERPILLAR	17.54						
3400 3400 3400 3400 3400 3400 3400 3400	3208 3206	1.87	23.53	125.13	163.21	114.92	2,15	
J408 0.37 51.0 162.05 212.36 16.77 230 1.66 1.66 1.66 1.66 1.67 <t< td=""><td>3406</td><td>15.19</td><td>12 87</td><td>00 00</td><td></td><td></td><td></td><td></td></t<>	3406	15.19	12 87	00 00				
CUMIN: 36.66 23 1.67 3.6.9 134.38 412.49 157.14 5.77 23 23 1.65 134.38 134.38 135.35 136.35 3.57 23 23 1.53 135.56 134.38 412.49 157.14 5.77 240 21.33 24.57 206.72 134.38 135.56 134.38 5.77 250 21.35 135.56 134.56 134.56 134.56 134.36 5.77 DEPROTY DIESEL 27.71 23.35 144.57 206.73 136.53 136.55 DEPROTY DIESEL 27.71 23.34 137.16 137.36 137.36 134.35 DEPROTY DIESEL 27.11 26.33 144.57 206.35 137.36 137.36 134.35 EV 1.1146 1.22 144.40 10.00 144.41 10.00 EV 1.114.65 142.00 135.36 1122.36 1123.36 124.31 EV<	3408	0.32	55.40	166.85	212.95	123.54	18.77	
220 230 240 400 MUD OTHEREL 1.57 20.40 27.00 1.4.57 20.40 1.4.57 2	CUMMINS	36.66						
250 1.10 1.200 <td< td=""><td>230</td><td></td><td>50</td><td></td><td></td><td></td><td></td><td></td></td<>	230		50					
200 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	250	1.83	35.50	169-BB	412.49 780 00	157.14	5.7	
400 400 OTHERS 7.71 4.157 31.63 2.73 13.63 4.155 13.61 2.73 13.73 4.157 13.65 2.64 13.15 2.64 13.16 2.64 13.16 13.16 2.64 13.16 <th13.16< th=""> <th1< td=""><td>290</td><td>20.40</td><td>19.90</td><td>126.40</td><td>364.35</td><td>16-671</td><td>20°52</td><td></td></th1<></th13.16<>	290	20.40	19.90	126.40	364.35	16-671	20°52	
Constraint Constraint <thconstraint< th=""> Constraint Constrai</thconstraint<>		ц.,	31.63	EL.8EL	432.08	166.53		
DEFROIT DIESEL 22.71 671 671 5149 19.90 60.35 56.68 3.11 672 5.49 19.90 60.35 56.68 3.11 673 6.33 40.35 55.75 355.35 107.74 5.25 674 453 5.12 107.74 5.25 67.33 107.74 5.27 106.33 107.74 5.25 67.33 107.74 100.00 112.00 553.38 560.13 476.74 0.000 112.00 466 5.25 330.25 105.25 10.000 112.01 466 5.25 301.25 10.000 112.01 466 5.25 301.25 10.000 112.01 466 5.25 301.25 10.000 112.01 466 10.00 10.000 112.01 466 10.00 10.00 112.01 466 10.00 10.00 10.00 112.01 466 10.00 10.00 10.00 112.01 466 10.00 10.00 10.00 112.01 10.00	450 AND OTHERS	5E-2 E7-0	44.57	208.72	11.114	218.54	5.07	
Construction Z2.11 671 5.49 19.90 60.35 55.66 3.11 87-71 5.49 19.90 60.35 55.66 3.11 87-71 5.49 19.90 60.35 55.72 355.16 5.13 87-73 5.04 14.20 55.13 266.66 5.13 87-93 6.13 50.13 268.19 10.49 87-93 67.46 167.46 155.21 154.41 0.00 87-93 142.00 535.34 560.13 268.19 10.49 87-93 142.00 535.34 560.13 268.19 10.49 8.2 142.00 535.34 560.13 268.19 10.49 8.2 117.66 14.25 301.25 301.25 139.26 8.11 166 5.35 301.25 301.25 132.36 132.36 8.2 6.13 2.05 182.36 182.36 51.25 12.35 8.2 7.4 10.00 182.36 182.36 51.25 8.4 7.75 301.25 182.36 182.36 51.25 8.7 8.7 8.7 182.36 182.36 51.25 <t< td=""><td>DPTBOLT DIFCEI</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	DPTBOLT DIFCEI	5						
671 671 671 673 67-35 5.40 67-35 19.90 60.35 60.35 5.66 5.46 187.16 331.35 6.25 55.66 6.25 311.6 6.25 87-31 4-32 6.35 6.23 5.04 42.07 42.07 503.13 50.13 50.13 56.66 6.25 51.16 74.41 0.00 8.2 LITER 6.35 6.25 6.35 74.41 50.13 74.41 187.14 74.41 0.00 NTERMATIONAL 8.22 142.07 74.41 50.13 74.41 147.07 74.41 208.19 74.41 0.00 NTERMATIONAL 8.22 19.35 74.41 195.21 185.23 301.25 18.16 NTERMATIONAL 8.22 19.35 301.25 301.25 18.23 9.4 LITER 14.62 14.61 74.41 0.00 NTEMANTIONAL 8.22 301.25 301.25 18.23 9.4 LITER 0.33 0.33 301.25 182.36 4.18 NCI 14.62 14.62 182.36 4.18 182.36 4.18 MCK 114.62 12.35 182.36 4.18 5.12 5.12 NCK 100 162.36 182.36 4.18 5.12 NCK 100 162.36 162.36 5.12 NCK 100 162.36 162.36 5.12		T/ • 77						
WT-92 W-92 W-92 W-92 W-92 W-92 W-92 W-92 W	6-71	5.49	19.90	60.35	BN 35	5 53	;	
NU-71 BU-71 BU-71 A-53 A-53 A-53 A-53 A-53 A-53 BU-71 A-53 A-53 BU-71 A-53 BU-71 A-53 BU-71 A-53 BU-71 BU-73 BU-73 BU-74	5V-92	5,80	40.22	75-72	RC 305		11-5	
4-33 6V-53 5-04 42.07 203.54 397.30 208.19 10.45 6V-53 6.25 167.46 165.21 17.41 0.00 INTERNATIONAL 8.22 14.61 157.36 157.46 165.21 17.41 0.00 INTERNATIONAL 8.22 1.97 0.95 157.46 165.21 17.41 0.00 INTERNATIONAL 8.22 0.117ER 1.97 0.35 157.46 165.21 17.41 0.00 9.0 LITER 1.97 0.99 5.25 301.25 301.25 18.23 16.15 MCR 14.62 0.99 12.55 301.25 301.25 18.236 18.236 ETZ 673 2.81 182.36 182.36 182.36 182.36 5.12 ETZ 673 2.81 182.36 182.36 182.36 5.12 ETZ 673 2.81 182.36 182.36 5.12 ETZ 673 1.69 182.36 5.12 ETZ 673 0.00 0	12-78 20-110	6.38	24.23	97.88	187.16	59-16	6.13	
6V-33 6V-33 560.13 476.74 0.00 R.2 LITER 14.2.00 555.38 560.13 476.74 0.00 INTERNATIONAL 8.22 14.41 74.41 74.41 0.00 INTERNATIONAL 8.22 393.51 393.51 393.51 74.41 0.00 9.0 LITER 1.97 393.51 393.51 393.51 774.4 0.00 B.2 LITER 1.97 393.51 301.25 393.51 7.75 B.40 LITER 1.69 14.62 301.25 18.03 B.41 0.00 14.62 301.25 18.23 MAC 14.62 182.36 182.36 5.12 ETZ 673 3.33 182.36 182.36 5.12 ETZ 673 3.33 182.36 182.36 5.12 ETZ 673 2.61 182.36 182.36 5.12 ETZ 673 2.62 182.36 182.36 5.12 ETZ 673 2.61 182.36 5.12 5.12 ETZ 673 2.62 182.36 5.12 5.12 ETZ 673 2.61 182.36 5.12 5.12 ETZ 673 2.61 182.36 5.12 5.12 </td <td>4-53</td> <td>5.04</td> <td>42.07</td> <td>203.54</td> <td>0E.79E</td> <td>208.19</td> <td>10.49</td> <td></td>	4-53	5.04	42.07	203.54	0E.79E	208.19	10.49	
6.1 LITER 0.10 74.41 155.41 0.00 INTERNATIONAL 8.22 74.41 155.41 0.00 INTERNATIONAL 8.22 393.51 74.41 155.41 0.00 INTERNATIONAL 8.22 9.0 LITER 1.97 393.51 7.15 9.0 LITER 1.97 393.51 393.51 7.15 7.15 0.111 466 6.25 301.25 301.25 18.03 MCK 14.62 14.62 301.25 18.16 MCK 14.62 182.36 182.36 182.36 182.36 ETZ 477 0.94 182.36 182.36 182.36 5.12 ETZ 673 2.48 182.36 182.36 182.36 5.12 ETZ 673 2.48 182.36 182.36 5.12 ETZ 673 2.48 182.36 182.36 5.12 ETZ 673 2.48 182.36 182.36 5.12 ETZ 673 2.41 0.24 182.35 5.12 ETZ 673 2.48 182.36 182.36 5.12 ETZ 673 2.48 182.36 182.36 5.12 ETZ 673 2.48 182.36 182.36 5.12 <tr< td=""><td>6V-53</td><td></td><td>142.00</td><td>535,38</td><td>560.13</td><td>476.74</td><td>0.00</td><td></td></tr<>	6V-53		142.00	535,38	560.13	476.74	0.00	
INTERNATIONAL 8-22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	B.2 LITER		96.60	16/.46 74.41	185.21	154.41	0.00	
INTERNATIONAL 8-22 9.0 LITER 1.97 9.1 LITER 1.97 9.1 LITER 1.97 9.1 Life 6.25 9.1 Life 6.25 MACK 14.62 Erz 47 Erz 47 Erz 673 Erz						16.00	0.0	
9.0 LITER 1.97 333.51 333.51 333.51 12.75 Dr(1) 466 6.25 330.25 18.83 MACK 14.62 5.25 330.25 18.83 Erz 477 0.94 182.36 182.36 5.15 Erz 673 2.62 182.36 182.36 4.78 Erz 673 2.62 182.36 182.36 5.82 Erz 673 2.62 182.36 182.36 182.36 5.82 Erz 7.72 1000 1.69 182.36 182.36 5.82 Erz 1000 1.69 182.36 182.36 5.82 Erz 1000 1.69 182.36 182.36 5.82 Erz 1000 1.69 182.36 182.36 5.82 Erz 1000 1.69 182.36 182.36 5.82 Erz 1000 1.69 182.36 182.36 182.36 5.82 Erz 1000 1.69 182.36 182.36 182.36 182.36 5.82 Erz 1000 1.69 182.36 182.36 182.36 182.36 182.36 5.82 Erz 1000 1.69 182.36 182.36 182.36 182.36 182.36 5.82 Erz 1000 1.69 182.36 182.36 182.36 182.36 132.36 5.82 Erz 1000 1.69 182.36 182.36 182.36 132.	INTERNATIONAL.	8.22						
DT(1) 666 6.25 301.25 17.75 MACK 14.62 501.25 301.25 16.83 MACK 14.62 301.25 16.83 Erz 477 0.94 182.36 182.36 6.15 Erz 673 2.62 182.36 182.36 4.78 Erz 673 2.62 182.36 182.36 5.12 Erz 676 2.62 182.36 182.36 5.12 Erz 676 2.62 182.36 182.36 5.12 Erz 676 2.62 182.36 182.36 5.12 Erz 1000 1.69 182.36 182.36 5.12 Erz 1000 1.69 182.36 5.12 5.12 Erz 182.36 182.36 5.12 5.12 Erz 0.00 1.82.36 5.12 5.12 SCANIA 0.24 0.00 182.36 5.12 FERCEDES OM325 0.00 0.24 0.00 0.00 FERCEDES OM325 0.00 0.00 0.00 0.00 TOTAL - SUM 0.00 0.00 0.00 0.00	9.0 LITER	1.97		13 595			i	
MACK 14.62 ETZ 477 0.94 ETZ 673 3.37 ETZ 673 3.37 ETZ 673 3.37 ETZ 673 3.39 ETZ 673 3.39 ETZ 673 3.49 ETZ 673 3.49 ETZ 673 3.49 ETZ 673 3.49 ETZ 675 182.36 182.36 4.78 182.36 5.85 5.82 182.36 5.85 5.82 182.36 5.85 5.82 182.36 5.15 5.82 182.36 5.12 5.82 182.36 5.12 5.82 182.36 5.12 5.82 182.36 5.12 5.82 182.36 5.12 5.82 182.36 5.12 5.82 182.36 5.12 5.82 182.36 5.12 5.82 182.36 5.12 5.82 182.36 5.12 5.82 182.36 5.12 5.82 182.36 5.82 5.82 182.36 5.82 5.82 5.82 5.82 5.82 5.82 5.82 5.82	DT(1) 466	6.25		301.25		301.25	18.83	
ETZ 477 0.94 182.36 6.15 ETX 673 3.37 182.36 182.36 6.15 ETX 673 3.37 182.36 182.36 4.78 ETX 675 3.19 182.36 182.36 5.12 ETX 675 2.61 100 1.69 182.36 5.12 ETX 1000 1.69 182.36 182.36 5.12 SCANTA 0.24 182.36 5.12 5.12 KERCEDES OM325 0.20 0.24 182.36 5.12 FERCEDES OM325 0.00 0.24 182.36 5.12	MACK	14.62						
ETZ 673 94 182.36 615 ETZ 673 94 182.36 182.36 615 ETZ 673 2.62 182.36 182.36 4.78 ETZ 675 2.19 182.36 182.36 512 ETZ 675 2.61 182.36 182.36 512 ETZ 675 2.62 182.36 182.36 512 ETZ 7 1000 1.69 182.36 512 SCANIA 0.24 182.36 512 512 SCANIA 0.24 182.36 512 512 FERCEDES 0M325 0.00 1.69 1.63 512 TCTAL - SUM 04.00 04.00 04.00 153.49	557							
ETAZ 673 2.62 182.36 182.36 6.15 ETAZ 675 2.62 182.36 182.36 5.12 ENDT 676 2.69 182.36 182.36 5.12 ENDT 676 1.69 182.36 182.36 5.12 SCALA 0.24 EERCEDES 0M325 0.24 HERCEDES 0M325 0.00 HERCEDES 0M325 0.00 TOTAL - SUM 94 94 94 94 94 94 94 94 94 94 94 94 153.49	ET2 673							
ETYZ 675 5.10 ENYZ 675 5.10 ETYZ 1000 1.69 182.36 182.36 5.82 SCAVIA 0.24 HERCEDES 0M325 0.00 HERCEDES 0M325 0.00 TCTAL - SUM 0.00 0.00 152.36 182.36 5.12 182.36 5.82 182.36 5.82 182.36 5.82 5.12 5.12 5.82 5.12 5.92 5.12 5.92 5.92 5.12 5.92 5.92 5.92 5.92 5.92 5.92 5.92 5.9	ETAZ 673			182,36		182.36	6,15	
ENDT 676 2.81 182.36 182.36 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12	ETZ 675	30.2		187 76		382.36	4.78	
ETEX 1000 1.69 5.12 SCANIA 0.24 HERCEDES 0M325 0.00 HERCEDES 0M325 0.00 TCTAL - SUM 94 94 94	ENDT 676	2.01		182.36		182.36 187 36	5-82	
SCANIA 0.24 HERCEDES OM325 0.00 TCTAL - SUM TOTAL - PRORATED 04 00 153.49	ETAZ 1000	1.69					71"6	
HERCEDES 0M325 0.00 HERCEDES 0M325 0.00 TCTAL - SUM TOTAL - PROBATED 04 00	SCANIA	D.24						
HERCEDES OM325 0.00 								
	HERCEDES OM325	0.00						•
TCTAL – SUM TOTAL – PROBATED 94 80 153.49								
TCTAL - SUM TCTAL - PRORATED 94 60 153.49								
	TCTAL - SUM TOTAL - PRORATED	66.46					153.49	

.

-**~~** ___

 \cap

Ω

بر ا المحمد المحمد

.... ا

.

40

.- .

.

0

TABLE 18 ESTIMATED COMPLIANCE PRICE BY ENGINE MODEL³ Series 1 - Total Market Vehicles.

ENGINE MANIPACTUREE	PERCENT	ESTIMATED CC	HPLIANCE FAI	5	DISTRIBUTION	MARKET	Rep
AND MODEL	MARKET	101	AVERAGE	HIGH	WEIGHTED PRICE	WEIGHTED PRICE	ort
CATERPILLAR	19.30						Na
3206 3206	4.70 0.10	23.53	E2.2EL	177.61	J24.3D	5.84	•
3406 3408	14.20	12.B7 59.90	107.90 180.35	316.35 228.70	125.25 168 78	17.79	468
CUMMINS	33.2				2		2
230		6					
250	1.60	40°00	14.7.87 78.7.87	372.49	160.06	5.28	
290	18.50	19.90	139.90	346.35	152.74	30.95	
350	7-00	81.63	151.63	392.08	175.63	12.29	
450 AND OTHERS	0.70	41.21	230.32	17.29E	227.03	4.77	
DETROIT DIESEL	24.80						
(2-3)			:	:			
6V-92	6.10	05.41	60.35 BA 22	80.35	56.68	3.00	
BV-71	6.00	24.23	103.28	87°C27	10.401	6.47	
8V-92	4.70	44.32	224.24	359.30	216.66	6.3U	
4-53 64-63	1.20	160.00	349.63	417.63	330.22	3.95	
8.2 LITER	02-1	67.96	180.96	200.96	165.81	1.99	
INTERNATIONAL.	50 8				10.10	0.24	7:
					•		;]
5.0 LITER	2.70		354.41			[č
DT(1) 466	6.20		268.25		268.25	16.4]
MACK	13.20						er
							. .
ET2 477	0.80						ne
510 211 Emty 273	3-00 2 2		203.96		203.96	6.12	2 k
ETE 213	2.40		203,96	•	203-96	4.90	
FRDF 676	02.0		203.55		203.96	5.91	aı
ETAZ 1000	1.50		96*607		203.96	5.30	n d
							ſ
SURAIA	07.0						le
	:						₩Ш
NEKLEDES UR320	0**0						an
							Ιŋ
TOTAL - SUM TOTAL - DDADAmen	100 001					158.32	
	10.001					164.40 ======	

ESTIMATED COMPLIANCE PRICE BY ENGINE MODEL; Series 2 - Total Market Vehicles. TABLE 19

MARTY LOA MERICE PALE MERICE PALE MERICE PALE 3208	ENGINE MANUFACTURER	DF TOTAL	ESTIMATED C	OMPLIANCE PRI	CE	DISTRIBUTION	MARKET
ATTREFILM 19.30 3208 -1.70 21.53 125.13 163.21 114.92 3006 -1.70 5.40 166.65 215.33 155.14 144.22 3006 -1.20 5.40 166.65 215.33 155.15 155.16 3006 -1.20 5.40 166.65 215.33 155.15 155.16 3000 0.10 0.10 0.10 0.10 14.17 216.55 155.16 300 0.11.00 11.20 125.10 154.18 157.14 156.15 300 0.10 0.10 14.17 216.55 156.56 157.16 300 0.15 0.15 125.16 107.74 156.16 157.14 201 0.10 41.27 0.15.18 117.17 216.25 201 0.15 0.15.10 412.40 177.14 157.14 201 0.17 0.12.00 41.27 177.14 157.14 201 0.17.10 <th></th> <th>HARKET</th> <th>FOH</th> <th>AVERAGE</th> <th>BICB</th> <th>WEIGHTED PRICE</th> <th>HEIGHTED</th>		HARKET	FOH	AVERAGE	BICB	WEIGHTED PRICE	HEIGHTED
3208 4.70 23.5 1513 1513 1513 1422 3100 0.130 55.40 132 1430 1435 1325 3100 0.130 55.40 1565 1247 14125 15555 311 132 132 132 1312 14119 14115 250 1320 1320 13436 13546 14116 13115 250 1320 1320 13616 13416 13115 13116 250 1320 1320 13616 13116 13116 260 13516 13616 13116 13116 13116 260 13516 13616 13116 13116 13116 2100 13115 13116 13116 13116 13116 2101 11116 11116 11116 11116 11116 2101 11116 11116 11116	ATERPILLAR	19.30					
3006 0.10 23-53 155.13 151.2.1 114.22 3006 0.120 5.40 134.43 152.45 155.15 155.15 300 0.120 5.40 134.43 152.45 155.15 155.15 300 0.120 1.20 134.43 152.45 155.15 155.15 300 0.10 1.20 134.50 154.43 157.16 155.15 300 0.10 1.20 134.50 156.16 157.16 155.15 300 0.10 0.10 141.71 216.13 155.16 155.16 301 1200 154.00 154.00 154.00 155.16 155.16 40< Alo	3208						
3400 Immus 14.20 3.5.0 12.67 3.5.0 94.00 3.5.0 34.36 3.5.0 14.20 3.5.0 14.20 3.5.0 14.20 3.5.0 14.35 3.5.0 134.36 3.5.0 134.37 3.5.0 134.2.46 134.2.46 1	3206	07.0	23.53	EL.25L	163.21	114-92	
Partnas 33.40 166.65 213.65 157.15 230 13.40 37.50 134.95 157.15 230 13.40 37.50 134.30 137.15 230 13.60 37.50 134.30 137.15 230 13.60 37.50 134.30 137.15 230 20.00 14.57 206.72 134.13 240 166.46 37.50 134.13 216.53 270 134.13 234.13 137.13 216.53 270 134.13 234.13 236.13 141.71 270 131.20 14.27 206.13 141.71 270 12.20 131.20 212.35 141.71 270 12.20 12.20 12.20 121.20 6-71 -7.1 201.23 337.30 151.56 6-71 -7.1 12.20 122.03 137.35 6-71 -7.1 12.20 122.03 137.35 6-71 -7.1 12.20 122.16 135.21 6-71 -7.1 12.20 122.16 112.26 6.71 -7.41 122.46 122.46 124.41 6.71 -7.41 <t< td=""><td>3406</td><td>14.20</td><td>12.87</td><td>98.00</td><td>348.35</td><td></td><td></td></t<>	3406	14.20	12.87	98.00	348.35		
Merrins 33.2 230 11.30 7.00 134.26 137.46 157.14 230 11.30 15.50 155.46 35.55 141.17 116.53 230 11.30 11.55 134.56 134.56 134.56 155.46 155.46 157.14 230 11.55 136.55 135.50 155.46 134.55 141.17 116.53 230 200 13.55 136.55 135.55 136.55 141.17 116.53 2700 135.51 136.55 136.55 136.55 136.55 141.17 116.55 2700 155.30 15.20 55.35 157.56 156.55 156.5		35.0	55.40	166.85	212.95	16.21	17.54
220 1.00 13.50 13.4.9 157.14 220 11.60 35.50 13.5.4 157.14 157.14 220 11.60 35.50 13.5.4 156.4 157.14 220 11.60 31.50 13.5.4 156.4 156.5 200 11.60 31.50 13.5.4 156.5 156.5 210 21.00 31.5.9 157.14 156.5 156.5 210 21.00 31.5.9 157.16 156.5 156.5 210 21.00 31.5.9 157.16 157.16 156.5 210 12.10 41.71 218.16 216.5 156.5 211 12.00 21.20 21.20 21.5 216.5 211 11.20 12.17 21.20 21.5 21.5 211 11.20 12.17 21.25 21.5 21.5 211 21.11 11.2.0 21.25 21.5 21.5 21.11 11.11 11.2.0 21.5 21.5 21.5 21.11 11.11 11.2.0 21.5 21.5 21.5 21.11 11.11 11.2.0 21.5 21.5 21.5 21.11<	SHIMM	33.2				1	0.47
250 1.40 7.00 134.19 157.14 250 10.00 15.50 134.19 157.14 450 AND OTHERS 7.00 14.57 2038.13 141.71 250 7.10 14.57 2038.13 141.71 250 7.10 14.57 2038.13 141.71 250 7.10 14.57 2038.13 141.71 260 7.10 14.57 2038.13 141.71 271 21.10 15.10 15.25 156.13 141.71 271 21.10 15.20 15.26 156.13 156.13 6-71 6-71 6-10 21.23 97.16 107.74 6-71 6-71 6-10 21.23 97.16 99.73 6-71 6-71 1.20 61.25 97.30 99.73 6-71 6-73 1.22.00 122.00 51.26 99.73 6-73 6.71 1.22.00 122.00 51.26 99.73 6-74 1.1178 2.72 97.81 99.73 97.41 74.41 11.128 11.22.00 51.25 99.73 125.41 6.71 6.117 6.55 91.25.56 91.25.56	230						
230 14:50 15:50 16:54 36:55 40 All OTHERS 2:10 31:63 15:50 16:54 36:55 7017 DIESEL 24.00 31:63 13:63 13:63 141.71 210.55 7017 DIESEL 24.00 31:63 13:63 13:63 13:63 14:21 210.54 7017 DIESEL 24.00 31:63 13:63 13:63 13:63 14:62 16:65 7017 DIESEL 24.00 41:57 24.00 41:57 24:63 16:54 7017 DIESEL 24.00 41:23 51:64 36:65 16:53 16:54 7017 DIESEL 24.00 41:23 51:67 97:87 16:54 16:54 600 21:20 12:20 21:20 12:23 17:46 30:155 8:2 LITER 11:20 12:20 12:20 16:23 16:27 8:2 LITER 11:20 6:.96 53:53 30:25 30:25 9:0 LITER 11:20 16:20 16:23 16:23 16:27 9:0 LITER 11:22 30:25 30:25 30:25 10:23 9:0 LITER 11:22 30:25 30:25 30:25 10:23 10:11:16	250	0	7.00	134.38	417.40		
300 60 AnD OTHERS 7.00 7.00 37.90 7.00 126.40 7.57 386.66 7.57 386.66 7.57 TROIT DIESEL 24.60 4.57 208.72 437.17 216.55 TROIT DIESEL 24.60 12.59 136.40 366.66 365.66 6-71 24.60 05 905 905 905 6-71 0.00 40.22 5536 905 905 6-71 0.00 40.22 5536 905 905 6-71 0.00 40.22 5536 905 905 6-71 0.00 40.22 5536 905 905 6-71 0.00 40.22 573 903 9015 8.7-53 11.20 142.00 5536 9016 141.11 8.7-53 11.20 142.00 5536 16116 16216 9.0<0	290	10 40	35.50	169.88	389.99	51°/cf	5.19
Weights 2.10 412.08 166.55 TROIT DIESEL 24.00 412.01 216.55 TROIT DIESEL 24.00 19.50 60.15 90.25 55.66 TROIT DIESEL 24.00 19.50 60.15 90.25 55.66 6-71 5.30 19.50 60.15 90.35 90.35 67-11 51.20 19.50 60.15 90.35 90.15 67-12 51.20 12.00 21.20 197.16 90.15 67-13 11.20 12.00 21.20 197.16 90.15 67-14 11.20 12.00 21.20 195.16 90.15 67-15 11.20 12.00 21.20 210.15 195.16 67-11 11.20 12.00 21.20 210.15 195.16 67-14 11.20 11.20 112.00 210.15 195.16 67-11 11.20 112.20 301.25 301.25 301.25 67-14 165.35 2.00 195.36 182.36 182.36 67-14 165.35 2.00 195.36 182.36 195.26 67-14 165.35 2.00 192.36 195.36 195.36	350	7.00	06-5T	126.40	384.35	149.21	2.90
TROIT DIESEL 0.00 TROIT DIESEL 24.40 6-71 5.30 6-71 5.30 6-71 5.30 6-72 5.30 6-72 5.30 6-71 5.30 6-72 5.30 6-71 5.30 6-72 5.30 6-73 5.30 8-73 6.10 8-7 12.00 8-2 17.14 8-2 17.14 8-2 17.14 8-2 17.14 8-2 17.14 8-2 17.14 8-2 17.14 8-2 17.14 8-2 17.14 8-2 17.14 8-2 17.14 8-2 17.14 8-2 182.16 9.0 182.36 9.1 182.36 182.36 182.36 182.36 182.36 182.36 182.36 182.36 182.36 182.36 182.36 182.36 182.36 182.36 182.36 182.36 182.36 182.36 182.36 182.36 182.36 <	450 AND OTHERS	2.10	44.57	208.72	432.08 441 71	166.53	11.66
TROIT DIESL 24.00 6-71 55.25 90.35 55.66 6-71 6.10 19.90 60.35 90.35 55.66 6-71 6.10 14.22 75.72 335.28 107,74 4-53 1.20 142.07 2035.66 99.16 6.10 14.20 12.20 535.38 107,74 4-53 1.20 12.20 535.38 107,74 4-53 1.20 12.20 535.38 107,74 4-53 1.20 12.20 535.38 107,74 6.10 77,46 105.21 14.11 754.41 74.41 T4.41 15.21 154.41 154.55 105.25 T4.41 165 5.2.00 T4.41 82.36 182.36 182.36 T4.4 11 152.36 182.36 182.36 T4.4 11 152.36 182.36 182.36 T4.4 11 152 160 112.25 182.76 182.36 182.36 T4.4 11 152 160 112.25 182.76 182.36 1		n, .u				\$C"9T7	4.59
6-71 6-71 5-30 19-90 60-35 55.75 55.66 87-32 6-10 24.22 75.72 305.56 95.16 87-35 6-10 24.23 75.72 305.54 95.16 87-35 6.10 24.23 75.73 203.54 95.16 87-35 6.10 24.23 75.73 203.54 95.16 87-53 6.20 142.00 533.34 357.30 208.19 8.2 <liter< td=""> 0.120 69.96 533.34 357.30 208.19 8.2<liter< td=""> 0.120 69.96 533.34 357.30 208.19 9.0<liter< td=""> 0.120 69.96 533.34 357.30 208.19 9.1<liter< td=""> 0.120 69.96 533.34 357.30 208.19 9.1<liter< td=""> 0.120 69.96 132.36 1182.36 1182.36 0.1<liter< td=""> 0.120 0.120 301.25 301.25 301.25 0.1<liter< td=""> 0.120 0.120 1122.36 1122.36 1122.36 0.1<liter< td=""> 0.120 1122.36 1122.36 1122.36 1122.36 0.1<liter< td=""> 0.200 1122.36 1122.36 1122.36 1122.36 <</liter<></liter<></liter<></liter<></liter<></liter<></liter<></liter<></liter<>	TROIT DIESEL	24.80					
67-92 67-92 67-35 90.35 55.66 87-21 6.00 24.22 75.72 255.36 56.66 87-33 1.20 122.00 535.36 56.66 87-33 1.20 122.00 55.35 397.36 99.36 8.2 LITER 0.30 122.00 55.35 397.36 56.46 8.2 LITER 0.30 122.00 535.36 56.01 74.41 74.41 1.20 122.00 50.35 56.01 74.41 74.41 1.20 122.00 50.35 56.01 74.41 74.41 1.20 122.00 50.35 56.01 74.41 74.41 1.20 0.30 50.35 56.01 74.41 74.41 1.20 122.00 50.35 56.01 56.21 9.0 LITER 0.30 0.30.25 301.25 301.25 301.25 0.11 VIL 46 2.20 132.36 1122.36 1122.36 301.25 0.11 VIL 46 2.40 1122.36 1122.36 1122.36 0.11 E10 1122.36 1122.36 1122.36 1122.36 0.11 E10 1122.36 1122.36 1122.36 1122.36 <t< td=""><td>6-71</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	6-71						
W-21 W-21 Y-22 Y-23 Y-23 Y-24 W-25 W-25 W-27 Y-23 Y-23 Y-11 Y-11 C + 25 W-25 W-25 Y-26 Y-26 Y-11 Y-11 C + 25 W-25 W-25 W-25 Y-26 Y-11 Y-11 E + 2 W-25 W-25 W-25 Y-26 Y-16 Y-16 Y-16 E + 2 U120 12.00 12.00 12.00 Y-11 Y-11 T + 11 W-25 W-25 W-25 Y-16 Y-16 E + 1 W-1 W-1 W-1 Y-11 Y-11 T + 1 W-1 W-1 W-1 Y-1 Y-1 FIRMATIONN W-90 W-1 W-1 W-1 Y-1 FIRMATIONN W-90 W-90 W-1 W-1 Y-1 C T W-1 W-1 W-1 <td>6V-92</td> <td>5.30</td> <td>19-90</td> <td>60.35</td> <td>80.35</td> <td></td> <td></td>	6V-92	5.30	19-90	60.35	80.35		
W-92 4-53 6-53 6-53 6-53 6-53 6-53 6-53 6-53 6	8V-71	01-9	40.22	75.72	325.28		00 . m
4-53 112.00 515.34 397.30 206.15 6.2 LITER 0.30 1220 69.96 167.46 185.21 44.41 TERNATIONIL 8.90 1.20 157.46 185.21 44.41 TERNATIONIL 8.90 1.20 157.46 185.21 44.41 TERNATIONIL 8.90 0.30 167.46 185.21 44.41 9.0 LITER 2.70 391.51 391.51 44.41 9.0 LITER 2.70 391.51 391.51 44.41 9.0 LITER 2.270 391.51 391.51 44.41 9.0 LITER 13.20 301.25 301.25 301.25 0.111, 466 13.20 301.25 301.25 301.25 0.120 0.80 182.36 182.36 182.36 0.120 182.36 182.36 182.36 182.36 Erz 673 2.40 182.36 182.36 182.36 Erz 673 2.20 182.36 182.36 182.36 Erz 673 2.20 182.36 182.36 182.36 Erz 675 182.36 182.36 182.36 182.36 Erz 675 182.36 182.36 182.36 182.36	BV-92	4.70	24.23	97.88 	187.16	91-66	6.57 5
BV-53 BV-53 F75-76 550.13 F75-76 6.2 LITER 0.30 6.96 74.41 74.41 TERNATIONAL 8.90 74.41 154.41 TERNATIONAL 8.90 393.51 74.41 9.0 LITER 0.30 6.20 393.51 393.51 9.0 LITER 0.30 5.20 393.51 393.51 9.0 LITER 0.20 393.51 393.51 393.51 0.1 LITER 0.20 301.25 301.25 301.25 0.1 LITER 0.20 301.25 301.25 301.25 0.1 LITER 0.20 182.36 182.36 182.36 0.1 LITER 0.20 0.40 182.36 182.36 0	4-53	1-20		203.54	397.30	208.19	
0.1 LITER 0.30 0.30 151.41 FERKATIONAL 8.90 74.41 185.21 154.41 9.0 LITER 0.10 393.51 393.51 393.51 9.0 LITER 0.100 13.20 393.51 393.51 393.51 9.0 LITER 0.100 0.20 393.51 393.51 393.51 9.0 LITER 0.100 13.20 301.25 301.25 301.25 0.11 466 0.20 0.80 132.36 182.36 182.36 0.12 0.20 182.36 182.36 182.36 182.36 0.13 0.20 182.36 182.36 182.36 182.36 0.13 0.20 1.50 182.36 182.36 182.36 0.14 0.20 1.50 1.62.35 182.36 182.36 0.14 0.20 1.62.0 1.62.35 182.36 182.36 0.15 0.20 0.20 1.50 1.62.35 182.36 0.14 0.20 0.20 1.1.50 1.1.50 0.14 0.20 0.20 0.40 1.22 0.15 0.1.50 0.20 0.40 1.22 0.15 0.20 0.20 0.20 </td <td>6V-53</td> <td>1.20</td> <td>00"7#T</td> <td>935.38</td> <td>560.13</td> <td>476.74</td> <td>0/ · C</td>	6V-53	1.20	00"7#T	935 . 38	560.13	476.74	0/ · C
TERINATIONAL B. 90 9.0 LITER 2.70 9.0 LITER 2.70 9.0 LITER 393.51 9.0 LITER 0.270 0 T(1) 466 2.70 0 T(1) 466 0.270 1 T 13.20 1 T 10.20 1 T 102.36 1 T 102.36 1 T 102.36 1 T 0.20	ALL LITER	0.30		74.41	I85.21	154.41	1.85
5.0 LITER 2.70 393.51 393.51 DT(1) 466 2.70 301.25 301.25 2.1 13.20 301.25 301.25 2.1 13.20 301.25 301.25 2.1 0.80 13.20 301.25 2.1 0.80 13.20 301.25 2.1 0.80 13.20 301.25 2.1 0.80 182.36 182.36 ETX 673 2.90 182.36 182.36 ETX 675 2.90 182.36 182.36 ETX 1000 1.50 102.36 182.36 MIA 0.20 0.20 102.36 CEDES 0M325 0.40 0.20 102.36 AL - FNORATED 100.00 100.00	TERNATIONAL	8.90				14-41	0.22
DT(1) 466 ² .70 ^{393.51} ^{393.51} ^{393.51} Cf ^{13.20} ^{13.20} ^{301.25} ^{301.25} Erz 477 ^{0.80} ^{0.80} ^{13.20} ^{301.25} ^{301.25} Erz 477 ^{0.80} ^{0.80} ^{13.20} ^{13.20} ^{301.25} Erz 473 ^{0.80} ^{13.20} ^{182.36} <t< td=""><td>9 D 1 TWB</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	9 D 1 TWB						
Cf 13.20 301.25 391.25 Erz 473 0.80 182.36 301.25 Erz 673 0.80 182.36 182.36 Erz 673 2.40 182.36 182.36 Erz 675 2.60 182.36 182.36 Erz 675 2.60 182.36 182.36 Erz 675 2.60 182.36 182.36 NIA 0.20 1.50 182.36 MIA 0.20 182.36 182.36 KL - SUM 100.0 1.60.0 AL - PROMATED 100.00	DT(I) 466	2.70		13.595			
CK 13.20 ETT 477 0.80 ETT 673 3.00 ETT 673 3.00 ETT 673 3.00 ETT 675 2.40 ETT 700 ETT 700 ETT 700 ETT 1000 182.36 18		6.20		301.25		193.51 301 35	10.62
ETZ 477 ETZ 673 ETZ 673 ETZ 673 ETZ 673 ETZ 673 ETZ 673 ETZ 675 ETZ 756 ETZ 7000 ETZ 7000 ETZ 7000 182.36	CE	13.20				C7*Tnc	18.68
ETZ 673 0.080 182.36 18	ETZ 477						
ETAZ 673 3.00 182.36 182.36 182.36 ETZ 675 2.40 182.36 182.36 182.36 ETZ 1000 1.50 182.36 182.36 182.36 MIA 0.20 1.02.36 182.36 182.36 AUL - 0.20 0.20 0.20 102.36 182.36 MIA 0.20 1.02.00 102.36 182.36 MIA 0.20 102.36 182.36 182.36 182.36 MIA 0.20 102.36 182.36	ETZ 673	0.80					
ETZ 675 2.40 182.36 182.36 182.36 ENDT 676 2.60 182.36 182.36 182.36 ETZ 1000 1.50 182.36 182.36 182.36 ANIA 0.20 ANIA 0.20 ACEDES 0M325 0.40 CEDES 0M325 0.40 CEDES 0M325 0.40 CEDES 0M325 0.40 CHI - SUM 100.00 10.00	ETA2 673	00.5		182.36			
ENDT 676 2.50 182.36 182.36 182.36 ETAZ 1000 1.50 182.36 182.36 MIA 0.20 WCEDES 0M325 0.40 CEDES 0M325 0.40 ML - SUM 100.00 102.01 102.36 182.36 ML - SUM 100.00 102.36 182.36 ML - SUM 100.00 102.36 182.36 ML - PRORATED 100.00	ET2 675	2.40		182.36		182.36	5.47
ETAZ 1000 1.50 182.36 182.36 182.36 MIA 0.20 WIA 0.20	ENDT 676	06.2		182.36		d6.201 25 791	9E-4
ANIA 0.20 (CEDES OM325 0.40 (CEDES OM325 0.40 PL - SUM AL - PRORATED 100.00	ETAZ 1000			182.36		182.36	67°9
CEDES OM325 0.20 CEDES OM325 0.40 PL - SUM AL - PRORATED 100.00 11	bnia B						:
		0.20					
PL - SUM PL - SUM PL - FROMATED 100.00 11	John Sanata						
PL - SUM 11. .AL - PRORATED 100.00 11.		D.40					
PAL - SUM PAL - PRORATED 100.00 							
AL - PRORATED 100.00 11.	ral – Sun						
	AL - PRORATED	100.00					157.62
							163.68

Bala

 $\widehat{}$

 \Box

173

·---

. .

. ...

Report No. 4682

Bolt Beranek and Newman Inc.

available -- generally about 95 to 99 percent of the market. That estimate is then prorated upward to 100 percent of the market. Again referring to Table 18, we see this exercise yields our estimate of \$164.40. This is the overall price increase for all trucks under Series 1 assumptions.

4.2 Diesel Engines - Series 3

A third series of price increases was estimated by using an approach different from that of Series 1 and 2. The Series 3 estimates are based on the overall average noise reduction required for each engine and the price increases estimated in the Demonstration Truck Program. Instead of disaggregating truck noise into exhaust and all other sources, we based Series 3 estimates on the overall noise level of the truck. For example, Cummins 290-powered vehicles have a mean noise level of 79.9 dBA, and thus need 2.4 dBA of overall noise reduction to attain a 77.5-dBA design level.

To estimate an overall price per dBA to use in this approach, we reviewed the price increases estimated in the Demonstration Truck Program. We focused on the GMC Brigadier and International Harvester F-4370. The overall noise level of the Brigadier was reduced by 10.3 dBA for a price of 1,174. The International Harvester F-4370 had 8.9 dBA of noise reduction for a price increase of 1,302. The two observations average 129/dBA.

The price of \$129/dBA was multiplied by the number of Aweighted decibels required to bring the average vehicle powered by each engine model to a 77-dBA design level. For example, the average Cummins 290 vehicle is 79.9 dBA, or 2.4 dBA above the design target. Therefore the price increase for this engine is \$309.60, i.e., 2.4 dBA @ \$129/dBA.

Bolt Beranek and Newman Inc.

The results of this exercise are presented in Tables 20 to 22. Referring to Table 22, we see the overall total price increase of \$352.

The \$352 Series 3 estimate reflects BBN's experience in reducing truck noise to 72 dBA, as opposed to 77.5 dBA. Given the increasing marginal cost per dBA that is associated with virtually every noise reduction application, we observe that this estimate likely overstates the price increase associated with a 77.5-dBA design level. However, it establishes an upper bound based on the Agency's experience with prototype vehicles.

The Series 3 estimate is twice as large as the Series 1 and 2 market weighted price increases. It is, however, roughly comparable to the "high" estimated compliance price for Series 1 and 2. The difference between the series largely reflects the fact that Series 3 is based on the average price of relatively large noise reductions, e.g., 9 to 10 dBA, whereas Series 1 and 2 are based on making the most cost-effective reductions possible over a relatively small range. Series 1 and 2 implicitly assume all shielding above the frame rail and single exhaust systems. Series 3 is based on the price of full (below the frame rail) enclosures and dual-exhaust systems.

Comparing Series 1, 2, and 3, the average price increase for trucks to comply with an 80-dBA regulatory level is estimated to be \$164 to \$352. Some vehicles would have price increases of \$300 to \$500, as shown in the high estimated compliance price column in Tables 14 to 19. Other vehicles would have estimated price increases of less than \$50 as shown in the low estimated compliance price column.

Bolt Beranek and Newman Inc.

TABLE 20ESTIMATED COMPLIANCE PRICE BY ENGINE MODEL;
SERIES 3 - CLASS 6 VEHICLES.

Engine Manufacturer and Model	Percent of Market	Noise Reduction (dBA)	Noise Reduction Price	Distribution Weighted Price
Caterry(1) ar				
. 1208	30.3	1.4	438.60	132.90
+ 3306	-		-	-
• 3406	4.6	2.6	335.40	15.43
· 3408	-	-	- 1	- 1
Cummina	-			
• 230	0.2	1.9	245.10	0.49
• 250	-	-	-] - [
• 290	0.6	2.4	309.60	1.86
· 350	0,5	2.3	296.70	1.48
• 400	0.2	3.1	399.90	0.80
• 450 & others	-	-	-	-
Detroit Diesel				
• 6-71	3.6	3.3	425.70	15.33
• 6V-92	8.7	2.4	309.60	26.94
• 8V-71	2.9	2.7	348.30	10.10
• 8V-92	1.1	3.2	412.80	4.54
• 4-53	12.6	4.3	554.70	69.89
• 6V-53	12.6	4.7	606.30	76.39
• 8.2L	2,9	2.3	296.70	8.60
International				
• 9.0 Liter	9.0	3.9	503.10	45.28
• DT(I) 466	6.0	3.3	425.70	25.54
Mack*				
• ETZ 477				
• ETZ 673	1		ł.	
• ETA2 673	·			
• ETZ 675				
• ENDT 676				
• ETAZ 1000				
Scania*				
Hercedes OM 325	4,0	2.5	322,50	12.90
TOTAL - SUM	100.0			448.48
TOTAL - PRORATED				449.66

*Does not produce Class 6 Trucks.

. $\sum_{i=1}^{n}$ 12 \Box 因此自然的影响的的。 的是我们就能够不可能是我们就能够到你们的。 我们就能够到我们就是我们的。 我们就能够到我们就是我们就能够到我们的。 我们就能够到我们就是我们就能够到我们的。 我们就能够到我们就是我们就能够到我们就能够到我们就能够到我们就是我们的。 10.00 131 | j) |21 1 IJ

1

Bolt Beranek and Newman Inc.

]

 \bigcap

n

 \Box

n Lui

17

TABLE 21ESTIMATED COMPLIANCE PRICE BY ENGINE MODEL;
SERIES 3 - CLASSES 7 AND 8 VEHICLES.

والمتحديد المتحج فالمعموم والرار

Engine Manufacturer and Model	Percent of Market	Noise Reduction (dBA)	Noise Reduction Price	Distribution Weighted Price
Cacerpillar				
3208	1.9	3.4	438.60	8.33
• 3306	0.2	-	-	-
• 3406	15.2	2,6	335.40	50.98
• 3408	0.3	3.3	425.70	1.28
Cucains	<u> </u>			
+ 230	3.7	1,9	245.10	9.07
• 250	1,8	z.3	296.70	5.34
• 290	20,4	2.4	309.60	63.16
• 350	7.7	2.3	296,70	22.85
• 400	2.3	3.1	399,90	9,20
• 450 & others	0.7	-	-	-
Detroit Diesel				
• 6-71	5.5	3.3	425.70	23.41
• 6V-92	5.8	2.4	309.60	17.96
• 8V-71	6.4	2,7	348.30	22.29
• 8V-92	5.0	3.2	412.80	20.64
• 453	0.0	4.3	554.70	-
· 6V-53	0.0	4.7	606,30	-
• 8.21.	0.0	2.3	296.70	-
International				
• 9.0 Liter	2.0	3,9	503.10	10.06
• DT(I) 466	6.3	3.3	425.70	26,82
Mack				
• ETZ 477	0.9	3.8	490.20	4.41
• ETZ 673	3.4	2.6	335.4D	11,40
• ETAZ 673	2,6	2.6	335.40	8,72
• ETZ 675	3.2	2.6	335.40	10,73
• ENDT 676	2.8	2.6	335,40	9.39
• ETAZ 1000	L.7	2.5	322.40	5.48
Scania	0.2	-	-	-
Hercodes OM 325	0.0	2.5	322,50	-
TOTAL - SUM	100.0			341.53
TOTAL - PRORATED				345.37

Bolt Beranek and Newman Inc.

TABLE 22

 $\widehat{}$

 \square

ESTIMATED COMPLIANCE PRICE BY ENGINE MODEL; SERIES 3 - TOTAL MARKET VEHICLES.

Engine Manufacturer and Model	Percent of Market	Noise Reduction (dBA)	Noise Reduction Price	Distribution Weighted Price
Caterpillar	1			
• 3208	4.7	3,4	438,60	20,60
• 3306	0.1	- 1	-	-
• 3406	14.2	2.6	330,40	47.63
• 3408	0.3	3.3	425.70	1.27
Cummins				
• 230	3.3	1.9	245.1D	8.09
+ 250	1.6	2,3	296,70	4.75
• 290	18.5	2.4	309.60	57.28
• 350	7.0	2.3	296.70	20.77
• 400	2.1	3,1	399,90	8.40
 450 & others 	0.7	-	-	
Detroit Diesel				
· 6-71	5.3	3.3	425.70	22.56
• 6V-92	5.1	2.4	309.60	15.79
• 8V-71	6.0	2.7	348.30	20.90
• 8V-92	4.7	3.2	412,80	19.40
• 4-53	1.2	4,3	554,70	6.65
· 6V-53	1.2	4.7	606,30	7.27
• 8.2L	0.3	2.3	296.70	0.89
International				
• 9.0 Liter	2.7	3.9	503.10	13.58
• DT(I) 466	6.2	3.3	425.70	26.39
Mack				
• ETZ 477	0.8	3.8	490.20	3.92
• ETZ 673	3.0	2.6	335.40	10.06
• ETAZ 673	2.4	2.6	335,40	8.05
• ETZ 675	2.9	2.6	335,40	9.73
• ENDT 676	2.6	2.6	335,40	8,72
• ETAZ 1000	.1.5	2.5	332,40	4.83
Scania	0.2	-	-	-
Mercedes OM 325	0.4	2.5	332.50	1.29
TOTAL - SLM	100.0	·····		348,28
TOTAL - PRORATED		···.		352.35

Ŋ \Box

.

د. بر المعد بالروم والمعيني

FIGURE 4. RELATION OF EXHAUST NOISE REDUCTION AND PRICE.

1 1

 $\bigcap_{i=1}^{n}$

[]]

r - E - E

Bolt Beranek and Newman Inc.

4.3 Gasoline Engines

The data in Sec. 3 show that gasoline-powered trucks are considerably quieter than their diesel engine counterparts. The vehicles reported by GM and Ford, were either at or near a 77.5dBA design level. We concluded that relatively minor noise reduction would be required, and that most of the reduction could be achieved through exhaust noise reduction. We also concluded that a small amount of "other" noise source reduction would be required for the International Harvester vehicles.

Data on the price of mufflers for gasoline trucks comparable to that for diesel trucks were not available. However, the extensive analysis of the price and noise levels of mufflers for diesel engines provided a more than adequate basis upon which to estimate prices of mufflers for gasoline-powered trucks. There were 37 observations for exhaust noise reduction and the corresponding price of that reduction from the analysis in Sec. 4.1. These observations are shown graphically in Fig. 4. We used these 37 observations to regress price increase as a function of exhaust noise reduction in A-weighted decibels. The resulting regression curve is shown as the dark solid line in Fig. 4. The estimated equation is:

 $Y = 0.152067 \times e^{X} + 2.47214$

(1)

where

Y = consumer price increase

x = dBA of exhaust noise reduction

Table 23 presents summary statistics for this muffler price equation. Given BBN's estimate of 6 dBA of exhaust noise reduction we estimate the price to be \$64.

Bolt Beranek and Newman Inc.

: |

11

TABLE 23 SUMMARY STATISTICS - MUFFLER PRICE EQUATION

Coefficient	Value	Standard Deviation	"T" Value
Intercept	2.47214	0.126335	19.568
Scope	0.152067	0.015093	10.076

Coefficient of Determination $(R^2) = 0.743$ "F" Value = 101.518

Note that the exponential form of the equation corresponds to the pattern of increasing marginal cost of quieting.

The price of other noise source reduction was assumed to be \$80/dBA. This was the Series 1 assumption and was chosen as the most conservative assumption.

Table 24 summarizes BBN's estimates of the amount of noise reduction required for each manufacturer and the corresponding price. We concluded that an exhaust noise reduction of 6 dBA would be sufficient for both GMC and Ford vehicles. We assumed that 100 percent of the GMC vehicles would require this exhaust treatment vs 15 percent of the Ford vehicles. Our rationale was that Ford vehicles were, on average, below 77.5 dBA, but that the upper end of the distribution - i.e., the 15 percent greater than one standard deviation - would require some exhaust noise reduction. Finally, we assumed all IH vehicles would require 6 dBA of exhaust and 1.4 dBA of other source noise reduction.

The price increase for each manufacturer was then weighted by sales by class. This weighting, which was based on MVMA sales data, is presented in Table 25. The result was an estimated overall increase of \$52.32; \$63.61 for Class 5 and 6 vehicles and \$40.25 for Class 7 and 8 vehicles.

Bolt Beranek and Newman Inc.

TABLE 24 SUMMARY OF NOISE REDUCTION AND PRICES BY MANUFACTURER: GASOLINE-POWERED TRUCKS.

	Required dBA Reduction		Noise Tr Co	eatment st	Popont	
	Exhaust	Other Sources	Exhaust	Other 'Sources	With Treatment	Weighted Price
Ford	6	0	64	0	15	9.60
General Motors	6	0	64	0	100	64
International Harvester	6	1.4	64	112	100	176

Source: BBN estimates.

TABLE 25 COMPLIANCE PRICE BY CLASS - 80 dBA LEVEL; GASOLINE-POWERED TRUCKS.

	Thostment	Percer	Percent Market Share		
	Weighted Price	Classes 5 & 6	Classes 7 & 8	All Classes	
Ford	\$ 9.60	21.1	76.6	38.9	
General Motors	64.00	69.0	7.4	49.3	
International Harvester	176.00	9.9	16.0	11.8	
Sales Weighted Price	-	\$63.61	\$40.25	\$52.32	

Source: BBN estimates.

ı.

Ţ

. . .

 \Box

(

12.5

Bolt Beranek and Newman Inc.

5. OPERATING COST IMPACTS

The treatments described in Sec. 4 will have an impact on fuel costs and maintenance costs. This section contains BBN's estimates of these incremental costs.

5.1 Incremental Fuel Costs

Fuel economy will be affected by three parameters. Increases in weight due to treatment panels and heavier mufflers will cause increased fuel costs. Increases in backpressure from more efficient mufflers will also cause increased fuel costs. Decreases in the amount of power required because of the addition of clutched fans will, on the other hand, decrease fuel costs. These parameters have been evaluated for each of the engines used in the medium and heavy diesel classes and for gasoline engines as a general class.

The Background Document presents estimates of incremental fuel costs based on the same three parameters identified above. BBN used the same analytical framework presented in the Background Document, but updated the information on weight, backpressure, and clutched fans. The discussion below describes how BBN developed updated estimates for each of these parameters.

The analysis of treatment costs presented in Sec. 4 is based upon an estimate of the noise reduction required from shielding and the muffler necessary to reach the design goal of 77.5 dBA. Muffler weight increases are known for each of the specific mufflers chosen. Noise shielding weights were derived from a linear regression of data from the Background Document and three of the four heavy trucks currently being quieted by BBN for EPA. These data are shown in Fig. 5 along with the estimated regression line. As can be seen in Table 26, the greatest reduction in noise required was 3.8 dBA for the IH 9-liter diesel engine in medium duty trucks and would require 100 lb of enclosure. The average enclosure weight is about 40 lb.

 $\hat{\Box}$

[]]

课题

(第) []

(a)) Fail Hai

, 3 (()

1-5 1-1-1-1-1-

1.2

1.

بدروتونو والأنكار

.

Bolt Beranek and Newman Inc.

TABLE 26. INCREASE IN WEIGHT DUE TO 80-dBA LEVEL.

	Engine	Average Noise Reduction Required	Wt of Enclosure	Wt increase of Muffler	Total Weight Increase	Percent of Market
	Cat 3208	1.0	33	11	44	0.30
el	מס					
ies	6V-92	0.5	22	16	38	0.09
е е	4-53	2.7	74	0	74	0.12
diu	6 V- 53	1.4	43	25	68	0.12
Me	IH 9 Liter	3.8	100	43	143	0.09
	We	ighted aver	age increas	e in total we	ight = 65	15
_	Cat 3406	1.2	38	8	46	0.15
1	Cummins					j
	290	1.5	45	8	53	0.20
	350	1.5	45	8	53	0.08
	DD			Į		
sel.	6-71	0	0	18	18	0.05
lie	6 ∀ -92	0.5	22	16	38	0.06
5	8 V- 71	0.6	24	33	57	0.06
Heav	8V-92	2.3	64	16	80	0.05
	IHDTI-406	3.3	88	7	95	0.06
	Mack	2.4	67	10	77	0.12
	We:	ighted avera	ige increase	e in total we:	lght = 57 1	b
ш	Ford	*				
i!	GM	*			1	}
Gas	IH	1.4	21	estimate	21	0.1
Ĺ	Wei	lghted avera	ige increase	in total we	lght = 2.1	1b

*Noise reduction not required.

1

~

È PE

ju.

i i imi

*-) 421

11

The additional weight for the muffler and exhaust system accessories was added to the enclosure weight. The total added weight was then sales-weighted to obtain the following salesweighted average weight increases:

- A 65-1b increase for medium duty diesel trucks,
- A 57-1b increase for heavy duty diesel trucks,
- A 2-1b increase for gasoline engine trucks.

The 2-1b estimate reflects the fact that only 10 percent of the gasoline trucks represented in the PV data set will need any noise treatment other than an improved muffler.

Increased exhaust backpressure has an adverse affect on fuel costs. Using published backpressure values for the selected mufflers, we calculated an average value of backpressure increase for medium and heavy duty diesel engine trucks. These values are shown in Table 27.

N	1edium	Heavy	
Engine	Backpressure Increase (Hg)	Engine	Backpressure Increase (Hg)
3208	1.06	3406	2.05
6V-92	-0.1	290	1.78
4-53	0.62	350	1.85
6V-53	1.21	6-71	0.85
		6V-92	-0.1
		8V-71	-0.1
	[8V-92	-0.14
Avera	ige ≈ 0.6975	Ave	erage = 0.884

TABLE 27. INCREASE IN BACKPRESSURE DUE TO 80-dBA LEVEL.

Bolt Beranek and Newman Inc.

The final constituent in the calculation of fuel costs is the reduction in required power due to a clutched fan drive. Virtually all of the heavy duty diesel trucks and 90 percent of the medium duty diesel trucks already have been equipped with clutched fans to provide improved mileage. On the basis of the percentages observed in the product verification data, some 50 percent of gasoline-engined trucks use clutched fans. Thus, only those trucks not currently using clutched fans can assume the benefits to fuel costs associated with switching. Entries from Table 6-8 of the Background Document indicate that a medium duty diesel truck can save 9 hp and a medium duty gasoline truck can save 4.5 hp by employing a clutched fan.

The estimated incremental annual fuel cost of an 80-dBA regulation is presented in Table 28. The values presented in the table

TABLE 28. CHANGES IN ANNUAL FUEL COSTS ASSOCIATED WITH 80-dBA REGULATORY LEVEL.

Engine Type	Medium Trucks*	Medium w/o Fan Clutch	Heavy Duty Trucks [†]
Diesel**	\$10.49	\$-390.08	\$150.39
Gas ^{††}	0.16	-398.30	0.30

*Assume 18,740 mi/yr. Ten percent of medium diesels benefit from addition of clutched fan. Fifty percent of medium gasoline trucks benefit from addition of clutched fan.

^TAssume 63,769 m1/yr.

**Fuel price \$1.25/gal.

^{††}Fuel price \$1.35/gal.

Source: BBN estimates.

Bolt Beranek and Newman Inc.

÷.,

1.11

 \sim

1

.....

Π

ŧ...i

11

ij

are derived in a manner similar to that in the Background Document and are based on weight and backpressure estimates derived in this analysis. These estimates were multiplied first by the values in Tables 6-6 to 6-10 of the Background Document and then by fuel costs of \$1.25 for diesel and \$1.35 for gasoline to determine the changes in annual fuel costs associated with going from an 83-dBA regulatory level to an 80-dBA level. For all classes but the heavy diesel trucks, improvements due to the use of fan clutches still dominate the fuel cost estimates.

5.2 Incremental Maintenance Costs

Two factors would increase the costs of maintaining vehicles that comply with an 80-dBA regulatory level:

• the cost of more expensive replacement mufflers

• the cost of removing shields during routine maintenance. These estimated costs are presented below.

An analysis was made of the difference in the replacement price of mufflers between the mufflers currently installed and those that would be installed; the base for our analysis is the analysis presented in Sec. 4. The overall average differential was \$46.33, which represents the incremental price of a replacement muffler for an 80-dBA regulatory level in comparison to the current 83-dBA level. Therefore, it is only the "parts" cost - \$46.33 that would change. Assuming a 4-year lifetime for diesel mufflers yields an annual increase in exhaust maintenance costs of \$11.58 for diesel-powered vehicles. The increase would be \$12.54 for class 6 diesel trucks and \$11.48 for classes 7 and 8.

The incremental replacement muffler price for gasolinepowered vehicles was estimated on a comparable basis. The major difference was that detailed price data for mufflers were not

Bolt Beranek and Newman Inc.

available to BBN. We assumed that medium duty gasoline trucks would have incremental replacement muffler costs of \$15, while the same cost would be \$25 for heavy duty trucks. Discussions with industry sources suggested that a 2-year muffler life was reasonable for gasoline engines. This results in an estimated muffler maintenance cost increase of \$8.97/yr -- \$7.50/yr for classes 5 and 6, and \$12.50/yr for classes 7 and 8.

Table 29 presents a summary of the estimated muffler maintenance costs of an 80-dBA regulatory level.

TABLE 29 ANNUAL MUFFLER MAINTENANCE COSTS 80-dBA REGULATION.

Engine	Classes 5 & 6	Classes 7 & 8	Total
Diesel	\$12.54	\$11.48	\$11.58
Gasoline	7.50	12.50	8.97

The cost of incremental maintenance time for removing side shields was estimated on the basis of results from the Demonstration Truck Program. We explicitly assume that full enclosures are not installed on any vehicles, and hence there are no access restrictions underneath the vehicle. Reduction of noise other than exhaust noise is achieved by engine compartment treatments, such as absorptive treatments, side shields, and other seals.

Data from the Demonstration Truck Program indicate that it takes 1 minute and 10 seconds (1:10) to remove and replace panels L1 and R1 on the GMC Brigadier. These two panels are above the frame rail on each side of the engine. They do not need to be removed for general engine service. The operator of the Brigadier has removed the panels, on average, once per month.

Bolt Beranek and Newman Inc.

We assumed panels would be removed once a month on 80-dBAdiesel trucks and that it would take an extra 15 min/yr to remove and reinstall panels. Typical service rates are \$25/hr. Therefore, the incremental cost is \$6.25 for panel removal. We then made an allowance for the panels themselves to be maintained and for access restriction penalties. We estimate the incremental annual maintenance costs of side shields and engine compartment seals to be \$12.50 for diesel-powered trucks.

Gasoline-powered trucks would have lower maintenance costs because only a small percentage of the population would require enclosures. Given the \$12.50 estimate for diesel-powered trucks, we believe \$5.00 is a reasonable estimate for incremental maintenance of engine compartment noise treatments for gasolinepowered trucks.

5.3 Operating Cost Summary

Table 30 presents a summary of operating cost increases for an 80-dBA regulatory level. The average diesel engine truck would have higher costs because of increased fuel costs for heavy duty diesels. These vehicles already have realized the benefits for clutched fans. The average gasoline engine truck would have a decrease in operating costs because of fuel savings from clutched fans on medium duty vehicles.

Bolt Beranek and Newman Inc.

Engine	Classes 5 & 6	Classes 7 & 8	Total
Diesel			
•• fuel	-\$ 29.57	\$150.39	\$133.90
• maint	25.04	24.08	24.17
Annual Cost	- 4.53	174.47	158.07
Gasoline			
• fuel	-\$199.07	\$ 0.30	-\$140.16
• maint	12.50	17.50	13.98
Annual Cost	- 186.57	17.80	- 126.18

TABLE 30 SUMMARY OF ANNUAL OPERATING COST INCREASES, 80-dBA REGULATORY LEVEL.

.....

J ئے۔ J []] \Box

Report No. 4682

Bolt Beranek and Newman Inc.

APPENDIX A

and the state of the second second second second second second second second second second second second second

1

i

i s

Π

Π

11

A-2

Exhaust Noise Level

A-4

A-5

م وعد ودم ود ورس دورود را و

- 0

A-6

. ...

• ...

· • .

A-7

·····

() ()

11

-

-

i. İ

i İvri

-

.....

ł

× 1

. . . .

8-A

....

NT OF RULE

ن____

п-у

ŧł

رار سيستندون وتنبط مانمات

and the second second

A-10

Exhaust Noise Level